Deformable Linear Object Prediction Using Locally Linear Latent Dynamics

被引:15
|
作者
Zhang, Wenbo [1 ]
Schmeckpeper, Karl [1 ]
Chaudhari, Pratik [1 ]
Daniilidis, Kostas [1 ]
机构
[1] Univ Penn, GRASP Lab, Philadelphia, PA 19104 USA
关键词
ROBOTIC MANIPULATION;
D O I
10.1109/ICRA48506.2021.9560955
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a framework for deformable linear object prediction. Prediction of deformable objects (e.g., rope) is challenging due to their non-linear dynamics and infinite-dimensional configuration spaces. By mapping the dynamics from a non-linear space to a linear space, we can use the good properties of linear dynamics for easier learning and more efficient prediction. We learn a locally linear, action-conditioned dynamics model that can be used to predict future latent states. Then, we decode the predicted latent state into the predicted state. We also apply a sampling-based optimization algorithm to select the optimal control action. We empirically demonstrate that our approach can predict the rope state accurately up to ten steps into the future and that our algorithm can find the optimal action given an initial state and a goal state.
引用
收藏
页码:13503 / 13509
页数:7
相关论文
共 50 条
  • [1] Particle Filters in Latent Space for Robust Deformable Linear Object Tracking
    Yang, Yuxuan
    Stork, Johannes A. A.
    Stoyanov, Todor
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (04): : 12577 - 12584
  • [2] DeformNet: Latent Space Modeling and Dynamics Prediction for Deformable Object Manipulation
    Li, Chenchang
    Ai, Zihao
    Wu, Tong
    Li, Xiaosa
    Ding, Wenbo
    Xu, Huazhe
    2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2024), 2024, : 14770 - 14776
  • [3] Object Sensing Using Linear Prediction and LMS
    Lee, Kwan Hyeong
    2018 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND INTELLIGENT SYSTEMS (CIIS 2018), 2018, : 61 - 65
  • [4] Robotic Manipulation of Sperm as a Deformable Linear Object
    Dai, Changsheng
    Shan, Guanqiao
    Liu, Hang
    Ru, Changhai
    Sun, Yu
    IEEE TRANSACTIONS ON ROBOTICS, 2022, 38 (05) : 2799 - 2811
  • [5] Learning Latent Dynamics for Autonomous Shape Control of Deformable Object
    Lu, Huimin
    Teng, Yadong
    Li, Yujie
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (11) : 13133 - 13140
  • [6] Model Based Deformable Object Manipulation Using Linear Robust Output Regulation
    Fanson, Richard
    Patriciu, Alexandru
    IEEE/RSJ 2010 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2010), 2010, : 496 - 501
  • [7] Topology Prediction of Branched Deformable Linear Objects Using Deep Learning
    Ouyang, Shengzhe
    Zuern, Manuel
    Zeh, Lukas
    Lechler, Armin
    Verl, Alexander
    IEEE ACCESS, 2024, 12 : 194399 - 194411
  • [8] Realtime Robust Shape Estimation of Deformable Linear Object
    Zhang, Jiaming
    Zhang, Zhaomeng
    Liu, Yihao
    Chen, Yaqian
    Itheradmand, Amir
    Annan, Mehran
    2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2024), 2024, : 10734 - 10740
  • [9] Object Matching Using a Locally Affine Invariant and Linear Programming Techniques
    Li, Hongsheng
    Huang, Xiaolei
    He, Lei
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (02) : 411 - 424
  • [10] Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images
    Watter, Manuel
    Springenberg, Jost Tobias
    Boedecker, Joschka
    Riedmiller, Martin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28