Modeling the Microstructure of Energetic Materials with Realistic Constituent Morphology

被引:15
|
作者
Jackson, Thomas L. [1 ]
Hooks, Daniel E. [2 ]
Buckmaster, John [3 ]
机构
[1] Univ Illinois, Urbana, IL 61801 USA
[2] Los Alamos Natl Lab, Los Alamos, NM USA
[3] Buckmaster Res, Urbana, IL 61801 USA
关键词
Energetic Materials; Level Sets; Packing Code; SENSITIVITY;
D O I
10.1002/prep.201000096
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
In this article, we present a strategy for packing realistic crystals, critical for mesoscale simulations, and predictions. The current packing code uses a dynamic algorithm, with crystal shapes represented by level sets, to create appropriate packs of the microstructure for an energetic material. Crystal shapes include the nitramines HMX, RDX, PETN, and CL20. Two series of packs are considered: a bidisperse pack with size ratio 1:0.3 and a polydisperse pack. We also construct equivalent packs of spheres for comparison purposes. Higher-order statistics are computed and compared. We show that the second-order statistics are essentially independent of particle shape when the packing fraction is held constant. The second-order statistics do, however, depend on the polydispersity.
引用
收藏
页码:252 / 258
页数:7
相关论文
共 50 条
  • [1] MOLECULAR MODELING: TOWARD A REALISTIC APPROACH TO MODEL ENERGETIC MATERIALS
    Brochu, David
    Jaidann, Mounir
    Abou-Rachid, Hakima
    Neidert, Jamie
    Brisson, Josee
    INTERNATIONAL JOURNAL OF ENERGETIC MATERIALS AND CHEMICAL PROPULSION, 2013, 12 (04) : 319 - 333
  • [2] Realistic modeling of porous materials
    Baravalle, Rodrigo
    Scandolo, Leonardo
    Delrieux, Claudio
    Garcia Bauza, Cristian
    Eisemann, Elmar
    COMPUTER ANIMATION AND VIRTUAL WORLDS, 2017, 28 (02)
  • [3] Engineering the Microstructure of Organic Energetic Materials
    Zhang, Gengxin
    Sun, Huizhong
    Abbott, Jason M.
    Weeks, Brandon L.
    ACS APPLIED MATERIALS & INTERFACES, 2009, 1 (05) : 1086 - 1089
  • [4] Validation of energetic materials models based on realistic experimental input
    Foster, J.S.
    Glenn, J.G.
    Gunger, M.
    Khimicheskaya Fizika, 2001, 20 (08): : 8 - 12
  • [5] Effect of microstructure on the detonation initiation in energetic materials
    J. Zhang
    T. L. Jackson
    Shock Waves, 2019, 29 : 327 - 338
  • [6] Realistic modeling of complex oxide materials
    Solovyev, I. V.
    COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (01) : 43 - 45
  • [7] Effect of microstructure on the detonation initiation in energetic materials
    Zhang, J.
    Jackson, T. L.
    SHOCK WAVES, 2019, 29 (02) : 327 - 338
  • [8] Modeling and prediction of sensitivity in energetic materials
    Garmasheva, NV
    Filin, VP
    Loboiko, BG
    Averin, AN
    Mathieu, D
    Simonetti, P
    Belmas, R
    SHOCK COMPRESSION OF CONDENSED MATTER-2001, PTS 1 AND 2, PROCEEDINGS, 2002, 620 : 439 - 441
  • [9] Multiscale modeling of crystalline energetic materials
    Ojeda, O.U.
    Çaǧin, T.
    Computers, Materials and Continua, 2010, 16 (02): : 127 - 173
  • [10] Multidimensional DDT modeling of energetic materials
    Baer, MR
    Hertel, ES
    Bell, RL
    SHOCK COMPRESSION OF CONDENSED MATTER - 1995, 1996, 370 : 433 - 436