Some properties of small perturbations against a stationary solution of the nonlinear Schrodinger equation

被引:2
|
作者
Smolyakov, Mikhail N. [1 ,2 ]
机构
[1] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia
[2] Russian Acad Sci, Inst Nucl Res, 60th October Anniversary Prospect 7a, Moscow 117312, Russia
基金
俄罗斯科学基金会;
关键词
Nonlinear Schrodinger equation; Gross-Pitaevskii equation; Nonlinear perturbations; Stationary solutions; Solitons; SOLITONS; VORTEX;
D O I
10.1016/j.chaos.2019.109570
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, classical small perturbations against a stationary solution of the nonlinear Schrodinger equation with the general form of nonlinearity are examined. It is shown that in order to obtain correct (in particular, conserved over time) nonzero expressions for the basic integrals of motion of a perturbation even in the quadratic order in the expansion parameter, it is necessary to consider nonlinear equations of motion for the perturbations. It is also shown that, despite the nonlinearity of the perturbations, the additivity property is valid for the integrals of motion of different nonlinear modes forming the perturbation (at least up to the second order in the expansion parameter). (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Nonlinear Schrodinger equation with spatiotemporal perturbations
    Mertens, Franz G.
    Quintero, Niurka R.
    Bishop, A. R.
    PHYSICAL REVIEW E, 2010, 81 (01):
  • [2] On the solution of the nonlinear Schrodinger equation
    Zayed, EME
    Zedan, HA
    CHAOS SOLITONS & FRACTALS, 2003, 16 (01) : 133 - 145
  • [3] On nonlinear perturbations of the Schrodinger equation with discontinuous coefficients
    Jäger, W
    Simon, L
    ACTA MATHEMATICA HUNGARICA, 2003, 98 (03) : 227 - 243
  • [4] Numerical solution of the stationary multicomponent nonlinear Schrodinger equation with a constraint on the angular momentum
    Sandin, Patrik
    Ogren, Magnus
    Gulliksson, Marten
    PHYSICAL REVIEW E, 2016, 93 (03):
  • [5] PERTURBATIONS OF SCHRODINGER EQUATION BY POTENTIALS WITH SMALL SUPPORT
    CHUESHOV, ID
    MATHEMATICAL NOTES, 1976, 20 (5-6) : 938 - 941
  • [6] Stationary nonlinear Schrodinger equation on simplest graphs
    Sabirov, K. K.
    Sobirov, Z. A.
    Babajanov, D.
    Matrasulov, D. U.
    PHYSICS LETTERS A, 2013, 377 (12) : 860 - 865
  • [7] ON THE SOLUTION OF THE NON-STATIONARY SCHRODINGER EQUATION
    Mishcharina, Elena Yuryevna
    Libin, Eduard Efimovich
    Bubenchikov, Mikhail Alekseevich
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2016, (05): : 28 - 34
  • [8] Method for Numerical Solution of the Stationary Schrodinger Equation
    Knyazev, S. Yu.
    Shcherbakova, E. E.
    RUSSIAN PHYSICS JOURNAL, 2017, 59 (10) : 1616 - 1622
  • [9] Soliton of modified nonlinear Schrodinger equation with random perturbations
    Lashkin, VM
    PHYSICAL REVIEW E, 2004, 69 (01): : 11
  • [10] Nonlinear perturbations of a periodic Schrodinger equation with supercritical growth
    Figueiredo, Giovany M.
    Miyagaki, Olimpio H.
    Moreira, Sandra Im.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (05): : 2379 - 2394