Generalized Poincare-Hopf theorem for compact nonsmooth regions

被引:19
|
作者
Simsek, Alp
Ozdaglar, Asuman
Acemoglu, Daron
机构
[1] MIT, Dept Econom, Off 32D 740, Cambridge, MA 02139 USA
[2] MIT, Dept Elect Engn & Comp Sci, Off 32D 630, Cambridge, MA 02139 USA
[3] MIT, Dept Econom, Off E52 380B, Cambridge, MA 02139 USA
关键词
Poincare-Hopf theorem; index theory; variational inequality; Euclidean projection; generalized equilibrium; nonlinear optimization;
D O I
10.1287/moor.1060.0235
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper presents an extension of the Poincare-Hopf theorem to generalized critical points of a function on a compact region with nonsmooth boundary, M, defined by a finite number of smooth inequality constraints. Given a function F: M -> R", we define the generalized critical points of F over M, define the index for the critical point, and show that the sum of the indices of the critical points is equal to the Euler characteristic of M. We use the generalized Poincare-Hopf theorem to present sufficient (local) conditions for the uniqueness of solutions to finite-dimensional variational inequalities and the uniqueness of stationary points in nonconvex optimization problems.
引用
收藏
页码:193 / 214
页数:22
相关论文
共 50 条