On Equilibrium Triangulations of Quasitoric Manifolds

被引:0
|
作者
Datta, Basudeb [1 ]
Sarkar, Soumen [2 ]
机构
[1] Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
[2] Indian Inst Technol Madras, Dept Math, Chennai 600036, Tamil Nadu, India
关键词
Quasitoric manifolds; Equilibrium triangulations; Vertex minimal triangulations; Complex projective space; TORUS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Quasitoric manifolds, introduced by Davis and Januskiewicz in their seminal paper in 1991, are topological generalizations of smooth complex projective spaces. In 1992, Banchoff and Kuhnel constructed a 10-vertex equilibrium triangulations of CP2. We generalize this construction for quasitoric manifolds providing an algorithm and construct equilibrium triangulation of several quasitoric manifolds. In some cases our construction give vertex minimal equilibrium triangulations.
引用
收藏
页码:57 / 78
页数:22
相关论文
共 50 条
  • [1] TOPOLOGICAL RIGIDITY OF QUASITORIC MANIFOLDS
    Metaftsis, Vassilis
    Prassids, Stratos
    MATHEMATICA SCANDINAVICA, 2018, 122 (02) : 179 - 196
  • [2] Examples of quasitoric manifolds as special unitary manifolds
    Lu, Zhi
    Wang, Wei
    MATHEMATICAL RESEARCH LETTERS, 2016, 23 (05) : 1453 - 1468
  • [3] Nonabelian symmetries of quasitoric manifolds
    Wiemeler, Michael
    MUENSTER JOURNAL OF MATHEMATICS, 2014, 7 (02): : 753 - 769
  • [4] Toric origami structures on quasitoric manifolds
    Anton A. Ayzenberg
    Mikiya Masuda
    Seonjeong Park
    Haozhi Zeng
    Proceedings of the Steklov Institute of Mathematics, 2015, 288 : 10 - 28
  • [5] Dirac operators and symmetries of quasitoric manifolds
    Wiemeler, Michael
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2013, 13 (01): : 277 - 312
  • [6] QUASITORIC MANIFOLDS OVER A PRODUCT OF SIMPLICES
    Choi, Suyoung
    Masuda, Mikiya
    Suh, Dong Youp
    OSAKA JOURNAL OF MATHEMATICS, 2010, 47 (01) : 109 - 129
  • [7] Generalized Virtual Polytopes and Quasitoric Manifolds
    Ivan Yu. Limonchenko
    Leonid V. Monin
    Askold G. Khovanskii
    Proceedings of the Steklov Institute of Mathematics, 2022, 318 : 126 - 149
  • [8] SPACES OF POLYTOPES AND COBORDISM OF QUASITORIC MANIFOLDS
    Buchstaber, Victor M.
    Panov, Taras E.
    Ray, Nigel
    MOSCOW MATHEMATICAL JOURNAL, 2007, 7 (02) : 219 - 242
  • [9] Generalized Virtual Polytopes and Quasitoric Manifolds
    Limonchenko, Ivan Yu
    Monin, Leonid, V
    Khovanskii, Askold G.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2022, 318 (01) : 126 - 149
  • [10] Quasitoric Totally Normally Split Manifolds
    Solomadin, Grigory D.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2018, 302 (01) : 358 - 379