Projection Greedy Algorithm

被引:0
|
作者
Borodin, P. A. [1 ,2 ]
Konyagin, S. V. [1 ,3 ]
机构
[1] Lomonosov Moscow State Univ, Lab Multidimens Approximat & Applicat, Moscow 119991, Russia
[2] Moscow Ctr Fundamental & Appl Math, Moscow 119991, Russia
[3] Russian Acad Sci, Steklov Math Inst, Moscow 119991, Russia
关键词
greedy approximations; Hilbert space; rate of convergence;
D O I
10.1134/S0001434621070026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce and study a new type of greedy algorithm, namely, projection greedy algorithms with respect to a given dictionary in a Hilbert space. We prove that these algorithms converge and estimate the rate of convergence for initial elements from the convex hull of the dictionary. Several specific examples of dictionaries are used to compare the introduced algorithms with orthogonal greedy algorithms.
引用
收藏
页码:16 / 25
页数:10
相关论文
共 50 条
  • [1] Projection Greedy Algorithm
    P. A. Borodin
    S. V. Konyagin
    [J]. Mathematical Notes, 2021, 110 : 16 - 25
  • [2] Greedy Kaczmarz Algorithm Using Optimal Intermediate Projection Technique for Coherent Linear Systems
    Geng, Fang
    Duan, Li-Xiao
    Zhang, Guo-Feng
    [J]. NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2022, 15 (02) : 464 - 483
  • [3] 3-D Point Cloud Registration Algorithm Based on Greedy Projection Triangulation
    Liu, Jian
    Bai, Di
    Chen, Li
    [J]. APPLIED SCIENCES-BASEL, 2018, 8 (10):
  • [4] Comparison of Purely Greedy and Orthogonal Greedy Algorithm
    Vishnevetskiy, K. S.
    [J]. MATHEMATICAL NOTES, 2024, 115 (1-2) : 37 - 43
  • [5] Comparison of Pure Greedy Algorithm with Pure Greedy Algorithm in a Pair of Dictionaries
    Orlova, A. S.
    [J]. MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2023, 78 (02) : 57 - 66
  • [6] The thresholding greedy algorithm, greedy bases, and duality
    Dilworth, SJ
    Kalton, NJ
    Kutzarova, D
    Temlyakov, VN
    [J]. CONSTRUCTIVE APPROXIMATION, 2003, 19 (04) : 575 - 597
  • [7] Comparison of Pure Greedy Algorithm with Pure Greedy Algorithm in a Pair of Dictionaries
    A. S. Orlova
    [J]. Moscow University Mathematics Bulletin, 2023, 78 : 57 - 66
  • [8] The Thresholding Greedy Algorithm, Greedy Bases, and Duality
    S.J. Dilworth
    N.J. Kalton
    Denka Kutzarova
    V.N. Temlyakov
    [J]. Constructive Approximation, 2003, 19 : 575 - 597
  • [9] Conical Greedy Algorithm
    Valov, M. A.
    [J]. MATHEMATICAL NOTES, 2022, 112 (1-2) : 171 - 176
  • [10] A framework for the greedy algorithm
    Vince, A
    [J]. DISCRETE APPLIED MATHEMATICS, 2002, 121 (1-3) : 247 - 260