Spatial random tree grammars for modeling hierarchical structure in images with regions of arbitrary shape

被引:11
|
作者
Siskind, Jeffrey M.
Sherman, James J., Jr.
Pollak, Ilya
Harper, Mary P.
Bouman, Charles A.
机构
[1] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[2] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
Bayesian methods for image understanding; multiscale analysis;
D O I
10.1109/TPAMI.2007.1169
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a novel probabilistic model for the hierarchical structure of an image and its regions. We call this model spatial random tree grammars (SRTGs). We develop algorithms for the exact computation of likelihood and maximum a posteriori (MAP) estimates and the exact expectation-maximization (EM) updates for model-parameter estimation. We collectively call these algorithms the center-surround algorithm. We use the center-surround algorithm to automatically estimate the maximum likelihood (ML) parameters of SRTGs and classify images based on their likelihood and based on the MAP estimate of the associated hierarchical structure. We apply our method to the task of classifying natural images and demonstrate that the addition of hierarchical structure significantly improves upon the performance of a baseline model that lacks such structure.
引用
收藏
页码:1504 / 1519
页数:16
相关论文
共 37 条
  • [1] Modeling hierarchical structure of images with stochastic grammars
    Wang, Wiley
    Wong, Tak-Shing
    Pollak, Ilya
    Bouman, Charles A.
    Harper, Mary P.
    COMPUTATIONAL IMAGING IV, 2006, 6065
  • [2] Particle-Based Shape Modeling for Arbitrary Regions-of-Interest
    Xu, Hong
    Morris, Alan
    Elhabian, Shireen Y.
    SHAPE IN MEDICAL IMAGING, SHAPEMI 2023, 2023, 14350 : 47 - 54
  • [3] Modeling of the biliary tree structure in MRCP images
    Logeswaran, Rajasvaran
    Eswaran, Chikkannan
    2005 IEEE INTERNATIONAL CONFERENCE ON ELECTRO/INFORMATION TECHNOLOGY (EIT 2005), 2005, : 281 - 286
  • [4] Modeling transient conduction in enclosed regions between isothermal boundaries of arbitrary shape
    Teertstra, P
    Yovanovich, MM
    Culham, JR
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2005, 19 (03) : 382 - 387
  • [5] MODELING THE SPATIAL STRUCTURE OF A RANDOM LUMINANCE FIELD
    SOLOMATIN, VA
    TROSHENKOV, MK
    SOVIET JOURNAL OF OPTICAL TECHNOLOGY, 1986, 53 (11): : 648 - 650
  • [6] Hierarchical Tree Structure based 2D Shape Matching
    Paradhi, Bhupesh P.
    Mahajan, Anjali
    Hingway, Shubhalaxmi
    2009 INTERNATIONAL CONFERENCE ON NEW TRENDS IN INFORMATION AND SERVICE SCIENCE (NISS 2009), VOLS 1 AND 2, 2009, : 511 - 514
  • [7] Method of canonical elements for modeling transfer processes in multiply connected regions of an arbitrary shape
    N. I. Nikitenko
    Yu. N. Kol’chik
    Journal of Engineering Physics and Thermophysics, 1999, 72 (5) : 808 - 814
  • [8] House Price Modeling over Heterogeneous Regions with Hierarchical Spatial Functional Analysis
    Liu, Bang
    Mavrin, Borislav
    Niu, Di
    Kong, Linglong
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2016, : 1047 - 1052
  • [9] Hierarchical modeling of linkage disequilibrum: Genetic structure and spatial relations
    Conti, DV
    Witte, JS
    AMERICAN JOURNAL OF HUMAN GENETICS, 2003, 72 (02) : 351 - 363
  • [10] Identification of lung regions in chest radiographs using hierarchical Markov random field modeling
    Vittitoe, N
    VargasVoracek, R
    Floyd, CE
    RADIOLOGY, 1997, 205 : 1072 - 1072