Multiple strategies for metabolic engineering of Escherichia coli for efficient production of glycolate

被引:17
|
作者
Zhu, Tong [1 ,2 ,3 ]
Yao, Die [2 ,3 ,4 ]
Li, Di [1 ,2 ,3 ]
Xu, Hongtao [2 ,3 ]
Jia, Shiru [1 ]
Bi, Changhao [2 ,4 ]
Cai, Jun [4 ]
Zhu, Xinna [2 ,3 ]
Zhang, Xueli [2 ,3 ]
机构
[1] Tianjin Univ Sci & Technol, Coll Biotechnol, Tianjin, Peoples R China
[2] Chinese Acad Sci, Tianjin Inst Ind Biotechnol, Tianjin, Peoples R China
[3] Chinese Acad Sci, Key Lab Syst Microbial Biotechnol, Tianjin, Peoples R China
[4] Nankai Univ, Coll Life Sci, Dept Microbiol, Tianjin, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Escherichia coli; glucose; g lycolate; NADP(+)-dependent GAPDH; ISOCITRATE DEHYDROGENASE; ETHYLENE-GLYCOL; PHOSPHORYLATION; ACID; PHOSPHOENOLPYRUVATE; IMPROVEMENT; LYASE;
D O I
10.1002/bit.27934
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Glycolate is a bulk chemical with wide applications in the textile, food processing, and pharmaceutical industries. Glycolate can be produced from glucose via the glycolysis and glyoxylate shunt pathways, followed by reduction to glycolate. However, two problems limit the productivity and yield of glycolate when using glucose as the sole carbon source. The first is a cofactor imbalance in the production of glycolate from glucose via the glycolysis pathway, since NADPH is required for glycolate production, while glycolysis generates NADH. To rectify this imbalance, the NADP(+)-dependent glyceraldehyde 3-phosphate dehydrogenase GapC from Clostridium acetobutylicum was introduced to generate NADPH instead of NADH in the oxidation of glyceraldehyde 3-phosphate during glycolysis. The soluble transhydrogenase SthA was further eliminated to conserve NADPH by blocking its conversion into NADH. The second problem is an unfavorable carbon flux distribution between the tricarboxylic acid cycle and the glyoxylate shunt. To solve this problem, isocitrate dehydrogenase (ICDH) was eliminated to increase the carbon flux of glyoxylate and thereby improve the glycolate titer. After engineering through the integration of gapC, combined with the inactivation of ICDH, SthA, and by-product pathways, as well as the upregulation of the two key enzymes isocitrate lyase (encoding by aceA), and glyoxylate reductase (encoding by ycdW), the glycolate titer increased to 5.3 g/L with a yield of 1.89 mol/mol glucose. Moreover, an optimized fed-batch fermentation reached a titer of 41 g/L with a yield of 1.87 mol/mol glucose after 60 h.
引用
收藏
页码:4699 / 4707
页数:9
相关论文
共 50 条
  • [1] Multiple Strategies for Metabolic Engineering of Escherichia coli for Efficient Production of Coenzyme Q10
    Huang Mingtao
    Wang Yue
    Liu Jianzhong
    Mao Zongwan
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2011, 19 (02) : 316 - 326
  • [2] Metabolic engineering of a xylose pathway for biotechnological production of glycolate in Escherichia coli
    Min Liu
    Yamei Ding
    Mo Xian
    Guang Zhao
    Microbial Cell Factories, 17
  • [3] Metabolic engineering of a xylose pathway for biotechnological production of glycolate in Escherichia coli
    Liu, Min
    Ding, Yamei
    Xian, Mo
    Zhao, Guang
    MICROBIAL CELL FACTORIES, 2018, 17
  • [4] Metabolic engineering strategies for butanol production in Escherichia coli
    Ferreira, Sofia
    Pereira, Rui
    Wahl, S. A.
    Rocha, Isabel
    BIOTECHNOLOGY AND BIOENGINEERING, 2020, 117 (08) : 2571 - 2587
  • [5] Metabolic Engineering of Escherichia coli for Efficient Production of Ectoine
    Wang, Ke
    Song, Xitong
    Cui, Boya
    Wang, Yi
    Luo, Wei
    Journal of Agricultural and Food Chemistry, 2025, 73 (01) : 646 - 654
  • [6] Metabolic Engineering of Escherichia coli for Efficient Production of Pseudouridine
    Zhou, Min
    Tang, Ruyu
    Wei, Liyuan
    Wang, Jidong
    Qi, Huan
    ACS OMEGA, 2023, 8 (39): : 36386 - 36392
  • [7] Metabolic engineering of Escherichia coli for efficient ectoine production
    Zhang, Shuyan
    Fang, Yu
    Zhu, Lifei
    Li, Hedan
    Wang, Zhen
    Li, Ying
    Wang, Xiaoyuan
    SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING, 2021, 1 (04): : 444 - 458
  • [8] Metabolic engineering strategies for caffeic acid production in Escherichia coli
    Hernandez-Chavez, Georgina
    Martinez, Alfredo
    Gosset, Guillermo
    ELECTRONIC JOURNAL OF BIOTECHNOLOGY, 2019, 38 (01): : 19 - 26
  • [9] Efficient production of guanosine in Escherichia coli by combinatorial metabolic engineering
    Zhang, Kun
    Qin, Mengxing
    Hou, Yu
    Zhang, Wenwen
    Wang, Zhenyu
    Wang, Hailei
    MICROBIAL CELL FACTORIES, 2024, 23 (01)
  • [10] Efficient production of phenyllactic acid in Escherichia coli via metabolic engineering and fermentation optimization strategies
    Wu, Weibin
    Chen, Maosen
    Li, Chenxi
    Zhong, Jie
    Xie, Rusheng
    Pan, Zhibin
    Lin, Junhan
    Qi, Feng
    FRONTIERS IN MICROBIOLOGY, 2024, 15