Limit theorems for empirical processes based on dependent data

被引:14
|
作者
Berti, Patrizia [1 ]
Pratelli, Luca [2 ]
Rigo, Pietro [3 ]
机构
[1] Univ Modena & Reggio Emilia, Modena, Italy
[2] Accademia Navale Livorno, Livorno, Italy
[3] Univ Pavia, I-27100 Pavia, Italy
来源
关键词
Conditional identity in distribution; Empirical process; Exchangeability; Predictive measure; Stable convergence; PREDICTIVE-DISTRIBUTIONS; RANDOM-VARIABLES; CONVERGENCE; SEQUENCES;
D O I
10.1214/EJP.v17-1765
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let (X-n) be any sequence of random variables adapted to a filtration (G(n)). Define a(n)(.) = P(Xn+1 is an element of . vertical bar G(n)), b(n) = 1/n Sigma(n-1)(i=0) a(i), and mu(n) = 1/n Sigma(n)(i=1) delta(Xi). Convergence in distribution of the empirical processes B-n = root n (mu(n) - b(n)) and C-n = root n (mu(n) - a(n)) is investigated under uniform distance. If (X-n) is conditionally identically distributed, convergence of B-n and C-n is studied according to Meyer-Zheng as well. Some CLTs, both uniform and non uniform, are proved. In addition, various examples and a characterization of conditionally identically distributed sequences are given.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [1] Limit theorems for smoothed empirical processes
    Rost, D
    [J]. HIGH DIMENSIONAL PROBABILITY II, 2000, 47 : 107 - 113
  • [2] Ratio limit theorems for empirical processes
    Giné, E
    Koltchinskii, V
    Wellner, JA
    [J]. STOCHASTIC INEQUALITIES AND APPLICATIONS, 2003, 56 : 249 - 278
  • [3] LIMIT-THEOREMS FOR EMPIRICAL PROCESSES
    POLLARD, D
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 57 (02): : 181 - 195
  • [4] SOME LIMIT-THEOREMS FOR EMPIRICAL PROCESSES
    GINE, E
    ZINN, J
    [J]. ANNALS OF PROBABILITY, 1984, 12 (04): : 929 - 989
  • [5] LIMIT THEOREMS FOR EMPIRICAL PROCESSES OF CLUSTER FUNCTIONALS
    Drees, Holger
    Rootzen, Holger
    [J]. ANNALS OF STATISTICS, 2010, 38 (04): : 2145 - 2186
  • [6] Limit Theorems for Occupation Rates of Local Empirical Processes
    Varron D.
    [J]. Sankhya A, 2015, 77 (2): : 249 - 276
  • [7] A NOTE ON LIMIT-THEOREMS FOR PERTURBED EMPIRICAL PROCESSES
    YUKICH, JE
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1989, 33 (01) : 163 - 173
  • [8] UNIFORM RATIO LIMIT-THEOREMS FOR EMPIRICAL PROCESSES
    POLLARD, D
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 1995, 22 (03) : 271 - 278
  • [9] SOME LIMIT-THEOREMS FOR EMPIRICAL PROCESSES - DISCUSSION
    ALEXANDER, KS
    DUDLEY, RM
    GAENSSLER, P
    PHILIPP, W
    POLLARD, D
    PYKE, R
    STUTE, W
    [J]. ANNALS OF PROBABILITY, 1984, 12 (04): : 990 - 998
  • [10] Limit Theorems for Occupation Rates of Local Empirical Processes
    Varron, Davit
    [J]. SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2015, 77 (02): : 249 - 276