PRECISE FINITE SPEED AND UNIQUENESS IN THE CAUCHY PROBLEM FOR SYMMETRIZABLE HYPERBOLIC SYSTEMS

被引:0
|
作者
Rauch, Jeffrey [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Finite speed; domain of influence; symmetrizable hyperbolic system; A uniqueness in the Cauchy problem; OPERATORS; STABILITY;
D O I
10.1090/S0002-9947-2010-05047-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Precise finite speed, in the sense of the domain of influence being a subset of the union of influence curves through the support of the initial data, is proved for hyperbolic systems symmetrized by pseudodifferential operators in the spatial variables. From this, uniqueness in the Cauchy problem at spacelike hypersurfaces is derived by a Holmgren style duality argument. Sharp finite speed is derived from an estimate for propagation in each direction. Propagation in a fixed direction is proved by regularizing the problem in the orthogonal directions. Uniform estimates for the regulaized equations are proved using pseudodifferential techniques of Beals-Fefferman type.
引用
收藏
页码:1161 / 1182
页数:22
相关论文
共 50 条
  • [1] On the Cauchy Problem for Microlocally Symmetrizable Hyperbolic Systems with Log-Lipschitz Coefficients
    Colombini, Ferruccio
    Del Santo, Daniele
    Fanelli, Francesco
    Metivier, Guy
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2020, 69 (03) : 785 - 836
  • [2] THE UNIQUENESS OF THE GENERALIZED SOLUTION OF CAUCHY PROBLEM FOR SYSTEMS OF QUASILINEAR HYPERBOLIC EQUATIONS
    ROZHDESTVENSKY, BL
    DOKLADY AKADEMII NAUK SSSR, 1958, 122 (05): : 762 - 765
  • [3] Cauchy problem for semilinear hyperbolic systems
    Bachelot, Alain
    Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, 1984, 1 (06): : 453 - 478
  • [4] Uniqueness of Solution to the Cauchy Problem for Aggregation Equation in Hyperbolic Space
    Vildanova, V. F.
    RUSSIAN MATHEMATICS, 2021, 65 (08) : 23 - 31
  • [5] The Cauchy problem for weakly hyperbolic systems
    Colombini, F.
    Metivier, Guy
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2018, 43 (01) : 25 - 46
  • [6] Uniqueness of Solution to the Cauchy Problem for Aggregation Equation in Hyperbolic Space
    V. F. Vildanova
    Russian Mathematics, 2021, 65 : 23 - 31
  • [7] Uniqueness of the Solution of the Cauchy Problem for Parabolic Systems
    E. A. Baderko
    M. F. Cherepova
    Differential Equations, 2019, 55 : 806 - 814
  • [8] Uniqueness of the Solution of the Cauchy Problem for Parabolic Systems
    Baderko, E. A.
    Cherepova, M. F.
    DIFFERENTIAL EQUATIONS, 2019, 55 (06) : 806 - 814
  • [9] Uniqueness of a solution to the Cauchy problem for parabolic systems
    E. A. Baderko
    M. F. Cherepova
    Doklady Mathematics, 2016, 93 : 316 - 317
  • [10] Uniqueness of a solution to the Cauchy problem for parabolic systems
    Baderko, E. A.
    Cherepova, M. F.
    DOKLADY MATHEMATICS, 2016, 93 (03) : 316 - 317