Residual MBConv Submanifold Module for 3D LiDAR-based Object Detection

被引:1
|
作者
Guo, Lie [1 ]
Huang, Liang [1 ]
Zhao, Yibing [1 ]
机构
[1] Dalian Univ Technol, Sch Automot Engn, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/IV51971.2022.9827381
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In LiDAR-based point cloud, objects are always represented as 3D bounding boxes with direction. LiDAR-based object detection task is similar to image-based task but comes with additional challenges. In LiDAR-based detection for autonomous vehicles, the size of 3D object is significant smaller compared with size of input scene represented by point cloud, thus conventional 3D backbones cannot effectively preserve detail geometric information of object with only a few points. To resolve this problem, this paper presents a MBConv Submanifold module, which is simple and effective for voxel-based detector from point cloud. The novel convolution architecture introduces inverted bottleneck and residual connection into 3D sparse backbone, which enable detector to learn high dimension feature from point cloud. Experiments shows that MBConv Submanifold module bring consistent improvement over the baseline method: MBConv Submanifold achieves the AP of 68.03% and 54.74% in the moderate cyclist and pedestrian category on the KITTI validation benchmark, surpass the baseline method significantly. Our code and pretrained models are available at: https://github.com/s1mpleee/ResMBSubmanifold.
引用
收藏
页码:1720 / 1724
页数:5
相关论文
共 50 条
  • [1] LiDAR-Based Symmetrical Guidance for 3D Object Detection
    Chu, Huazhen
    Ma, Huimin
    Liu, Haizhuang
    Wang, Rongquan
    PATTERN RECOGNITION AND COMPUTER VISION, PT IV, 2021, 13022 : 472 - 483
  • [2] LiDAR-based 3D Object Detection for Autonomous Driving
    Li, Zirui
    2022 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, COMPUTER VISION AND MACHINE LEARNING (ICICML), 2022, : 507 - 512
  • [3] Reinforcing LiDAR-Based 3D Object Detection with RGB and 3D Information
    Liu, Wenjian
    Zhou, Yue
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT II, 2019, 11954 : 199 - 209
  • [4] Out-of-Distribution Detection for LiDAR-based 3D Object Detection
    Huang, Chengjie
    Van Duong Nguyen
    Abdelzad, Vahdat
    Mannes, Christopher Gus
    Rowe, Luke
    Therien, Benjamin
    Salay, Rick
    Czarnecki, Krzysztof
    2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 4265 - 4271
  • [5] RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection
    Fan, Lue
    Xiong, Xuan
    Wang, Feng
    Wang, Naiyan
    Zhang, Zhaoxiang
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 2898 - 2907
  • [6] Revisiting Out-of-Distribution Detection in LiDAR-based 3D Object Detection
    Koesel, Michael
    Schreiber, Marcel
    Ulrich, Michael
    Glaeser, Claudius
    Dietmayer, Klaus
    2024 35TH IEEE INTELLIGENT VEHICLES SYMPOSIUM, IEEE IV 2024, 2024, : 2806 - 2813
  • [7] KPTr: Key point transformer for LiDAR-based 3D object detection
    Cao, Jie
    Peng, Yiqiang
    Wei, Hongqian
    Mo, Lingfan
    Fan, Likang
    Wang, Longfei
    MEASUREMENT, 2025, 242
  • [8] LiDAR-MIMO: Efficient Uncertainty Estimation for LiDAR-based 3D Object Detection
    Pitropov, Matthew
    Huang, Chengjie
    Abdelzad, Vahdat
    Czarnecki, Krzysztof
    Waslander, Steven
    2022 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2022, : 813 - 820
  • [9] Aerial LiDAR-based 3D Object Detection and Tracking for Traffic Monitoring
    Cherif, Baya
    Ghazzai, Hakim
    Alsharoa, Ahmad
    Besbes, Hichem
    Massoud, Yehia
    2023 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS, 2023,
  • [10] Adversarial Obstacle Generation Against LiDAR-Based 3D Object Detection
    Wang, Jian
    Li, Fan
    Zhang, Xuchong
    Sun, Hongbin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 2686 - 2699