Memristor Parallel Computing for a Matrix-Friendly Genetic Algorithm

被引:8
|
作者
Yu, Yongbin [1 ]
Mo, Jiehong [1 ]
Deng, Quanxin [1 ]
Zhou, Chen [1 ]
Li, Biao [1 ]
Wang, Xiangxiang [1 ]
Yang, Nijing [1 ]
Tang, Qian [1 ]
Feng, Xiao [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu 610054, Peoples R China
基金
中国国家自然科学基金;
关键词
Biological cells; Genetic algorithms; Memristors; Statistics; Sociology; Parallel processing; Computational modeling; Feature selection; genetic algorithms (GAs); memristors; parallel computing; FEATURE-SELECTION; CROSSBAR ARRAY; SYSTEM;
D O I
10.1109/TEVC.2022.3144419
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Matrix operation is easy to be paralleled by hardware, and the memristor network can realize a parallel matrix computing model with in-memory computing. This article proposes a matrix-friendly genetic algorithm (MGA), in which the population is represented by a matrix and the evolution of population is realized by matrix operations. Compared with the performance of a baseline genetic algorithm (GA) on solving the maximum value of the binary function, MGA can converge better and faster. In addition, MGA is more efficient because of its parallelism on matrix operations, and MGA runs 2.5 times faster than the baseline GA when using the NumPy library. Considering the advantages of the memristor in matrix operations, memristor circuits are designed for the deployment of MGA. This deployment method realizes the parallelization and in-memory computing (memristor is both memory and computing unit) of MGA. In order to verify the effectiveness of this deployment, a feature selection experiment of logistic regression (LR) on Sonar datasets is completed. LR with MGA-based feature selection uses 46 fewer features and achieves 11.9% higher accuracy.
引用
收藏
页码:901 / 910
页数:10
相关论文
共 50 条