VersaTile Convolutional Neural Network Mapping on FPGAs

被引:0
|
作者
Munio-Gracia, A. [1 ]
Fernandez-Berni, J. [1 ]
Carmona-Galan, R. [1 ]
Rodriguez-Vazquez, A. [1 ]
机构
[1] Univ Seville, CSIC, Inst Microelect Sevilla, IMSE,CNM, Seville, Spain
基金
欧盟地平线“2020”;
关键词
Hardware acceleration; FPGA implementation; Convolutional Neural Networks;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Convolutional Neural Networks (ConvNets) are directed acyclic graphs with node transitions determined by a set of configuration parameters. In this paper, we describe a dynamically configurable hardware architecture that enables data allocation strategy adjustment according to ConvNets layer characteristics. The proposed flexible scheduling solution allows the accelerator design to be portable across various scenarios of computation and memory resources availability. For instance, FPGA block-RAM resources can be properly balanced for optimization of data distribution and minimization of off-chip memory accesses. We explore the selection of tailored scheduling policies that translate into efficient on-chip data reuse and hence lower energy consumption. The system can autonomously adapt its behavior with no need of platform reconfiguration nor user supervision. Experimental results are presented and compared with state-of-the-art accelerators.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] fpgaConvNet: Automated Mapping of Convolutional Neural Networks on FPGAs
    Venieris, Stylianos I.
    Bouganis, Christos-Savvas
    [J]. FPGA'17: PROCEEDINGS OF THE 2017 ACM/SIGDA INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE GATE ARRAYS, 2017, : 291 - 292
  • [2] fpgaConvNet: A Framework for Mapping Convolutional Neural Networks on FPGAs
    Venieris, Stylianos I.
    Bouganis, Christos-Savvas
    [J]. 2016 IEEE 24TH ANNUAL INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM), 2016, : 40 - 47
  • [3] fpgaConvNet: Mapping Regular and Irregular Convolutional Neural Networks on FPGAs
    Venieris, Stylianos, I
    Bouganis, Christos-Savvas
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (02) : 326 - 342
  • [4] Designing A Compact Convolutional Neural Network Processor on Embedded FPGAs
    Ling, Yin-Chun
    Chin, Hsu-Hsun
    Wu, Hsin-, I
    Tsay, Ren-Song
    [J]. 2020 IEEE GLOBAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INTERNET OF THINGS (GCAIOT), 2020, : 71 - 77
  • [5] Toolflows for Mapping Convolutional Neural Networks on FPGAs: A Survey and Future Directions
    Venieris, Stylianos I.
    Kouris, Alexandros
    Bouganis, Christos-Savvas
    [J]. ACM COMPUTING SURVEYS, 2018, 51 (03)
  • [6] DeepFire2: A Convolutional Spiking Neural Network Accelerator on FPGAs
    Aung, Myat Thu Linn
    Gerlinghoff, Daniel
    Qu, Chuping
    Yang, Liwei
    Huang, Tian
    Goh, Rick Siow Mong
    Luo, Tao
    Wong, Weng-Fai
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 2023, 72 (10) : 2847 - 2857
  • [7] Optimized Distribution of an Accelerated Convolutional Neural Network across Multiple FPGAs
    Maarouf, Alaa
    El Droubi, Nour
    Morcel, Raghid
    Hajj, Hazem
    Saghir, Mazen A. R.
    Akkary, Haitham
    [J]. 28TH IEEE INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM), 2020, : 235 - 235
  • [8] f-CNNx: A Toolflow for Mapping Multiple Convolutional Neural Networks on FPGAs
    Venieris, Stylianos I.
    Bouganis, Christos-Savvas
    [J]. 2018 28TH INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE LOGIC AND APPLICATIONS (FPL), 2018, : 381 - 388
  • [9] WETLAND MAPPING BY JOINTLY USE OF CONVOLUTIONAL NEURAL NETWORK AND GRAPH CONVOLUTIONAL NETWORK
    Jafarzadeh, Hamid
    Mahdianpari, Masoud
    Gill, Eric
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 2219 - 2222
  • [10] DEEP CONVOLUTIONAL NEURAL NETWORK FOR MANGROVE MAPPING
    Iovan, Corina
    Kulbicki, Michel
    Mermet, Eric
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 1969 - 1972