HYSTERESIS-DRIVEN PATTERN FORMATION IN REACTION-DIFFUSION-ODE SYSTEMS

被引:22
|
作者
Koethe, Alexandra [1 ,2 ]
Marciniak-Czochra, Anna [3 ,4 ]
Takagi, Izumi [5 ,6 ]
机构
[1] Heidelberg Univ, Inst Appl Math, D-69120 Heidelberg, Germany
[2] Heidelberg Univ, Bioquant, D-69120 Heidelberg, Germany
[3] Heidelberg Univ, Inst Appl Math, Bioquant, D-69120 Heidelberg, Germany
[4] Heidelberg Univ, Interdisciplinary Ctr Sci Comp IWR, D-69120 Heidelberg, Germany
[5] Renmin Univ China, Inst Math Sci, Beijing 100872, Peoples R China
[6] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
关键词
Reaction-diffusion-ODE system; pattern formation; bistable kinetics; hysteresis; stationary solution with jump discontinuity; asymptotic stability; RECEPTOR-BASED MODELS; TURING INSTABILITY;
D O I
10.3934/dcds.2020170
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper is devoted to analysis of far-from-equilibrium pattern formation in a system of a reaction-diffusion equation and an ordinary differential equation (ODE). Such systems arise in modeling of interactions between cellular processes and diffusing growth factors. Pattern formation results from hysteresis in the dependence of the quasi-stationary solution of the ODE on the diffusive component. Bistability alone, without hysteresis, does not result in stable patterns. We provide a systematic description of the hysteresis-driven stationary solutions, which may be monotone, periodic or irregular. We prove existence of infinitely many stationary solutions with jump discontinuity and their asymptotic stability for a certain class of reaction-diffusion-ODE systems. Nonlinear stability is proved using direct estimates of the model nonlinearities and properties of the strongly continuous diffusion semigroup.
引用
收藏
页码:3595 / 3627
页数:33
相关论文
共 50 条
  • [1] Reaction-Diffusion-ODE Models of Pattern Formation
    Marciniak-Czochra, Anna
    EVOLUTIONARY EQUATIONS WITH APPLICATIONS IN NATURAL SCIENCES, 2015, 2126 : 387 - 438
  • [2] Pattern formation in a reaction-diffusion-ODE model with hysteresis in spatially heterogeneous environments
    Takagi, Izumi
    Zhang, Conghui
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 280 : 928 - 966
  • [3] Existence of traveling wave solutions to reaction-diffusion-ODE systems with hysteresis
    Hou, Lingling
    Kokubu, Hiroshi
    Marciniak-Czochra, Anna
    Takagi, Izumi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 364 : 667 - 713
  • [4] DIFFUSION-DRIVEN BLOWUP OF NONNEGATIVE SOLUTIONS TO REACTION-DIFFUSION-ODE SYSTEMS
    Marciniak-Czochra, Anna
    Karch, Grzegorz
    Suzuki, Kanako
    Zienkiewicz, Jacek
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2016, 29 (7-8) : 715 - 730
  • [5] Necessary Stability Conditions for Reaction-Diffusion-ODE Systems
    Bajodek, Mathieu
    Lhachemi, Hugo
    Valmorbida, Giorgio
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (11) : 7940 - 7947
  • [6] Instability of turing patterns in reaction-diffusion-ODE systems
    Marciniak-Czochra, Anna
    Karch, Grzegorz
    Suzuki, Kanako
    JOURNAL OF MATHEMATICAL BIOLOGY, 2017, 74 (03) : 583 - 618
  • [7] Instability of turing patterns in reaction-diffusion-ODE systems
    Anna Marciniak-Czochra
    Grzegorz Karch
    Kanako Suzuki
    Journal of Mathematical Biology, 2017, 74 : 583 - 618
  • [8] Stable discontinuous stationary solutions to reaction-diffusion-ODE systems
    Cygan, Szymon
    Marciniak-Czochra, Anna
    Karch, Grzegorz
    Suzuki, Kanako
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2023, : 478 - 510
  • [9] Instability of all regular stationary solutions to reaction-diffusion-ODE systems
    Cygan, Szymon
    Marciniak-Czochra, Anna
    Karch, Grzegorz
    Suzuki, Kanako
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 337 : 460 - 482
  • [10] Dynamics of a reaction-diffusion-ODE system with quiescence
    Wang, Jinfeng
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 58