A modular approach for item response theory modeling with the R package flirt

被引:9
|
作者
Jeon, Minjeong [1 ]
Rijmen, Frank [2 ]
机构
[1] Ohio State Univ, Dept Psychol, Fac Quantitat Psychol, 228 Lazenby Hall 1827 Neil Ave, Columbus, OH 43210 USA
[2] CTB McGraw Hill, New York, NY USA
关键词
Modular approach; R software; Item response theory; Explanatory models; Multidimensional models; Bifactor models; DIF;
D O I
10.3758/s13428-015-0606-z
中图分类号
B841 [心理学研究方法];
学科分类号
040201 ;
摘要
The new R package flirt is introduced for flexible item response theory (IRT) modeling of psychological, educational, and behavior assessment data. flirt integrates a generalized linear and nonlinear mixed modeling framework with graphical model theory. The graphical model framework allows for efficient maximum likelihood estimation. The key feature of flirt is its modular approach to facilitate convenient and flexible model specifications. Researchers can construct customized IRT models by simply selecting various modeling modules, such as parametric forms, number of dimensions, item and person covariates, person groups, link functions, etc. In this paper, we describe major features of flirt and provide examples to illustrate how flirt works in practice.
引用
收藏
页码:742 / 755
页数:14
相关论文
共 50 条
  • [1] A modular approach for item response theory modeling with the R package flirt
    Minjeong Jeon
    Frank Rijmen
    Behavior Research Methods, 2016, 48 : 742 - 755
  • [2] Flexible Item Response Theory Modeling With FLIRT
    Jeon, Minjeong
    Rijmen, Frank
    Rabe-Hesketh, Sophia
    APPLIED PSYCHOLOGICAL MEASUREMENT, 2014, 38 (05) : 404 - 405
  • [3] irtplay: An R Package for Unidimensional Item Response Theory Modeling
    Lim, Hwanggyu
    Wells, Craig S.
    JOURNAL OF STATISTICAL SOFTWARE, 2022, 103 (12): : 1 - 42
  • [4] ltm: An R package for latent variable modeling and item response theory analyses
    Rizopoulos, Dimitris
    JOURNAL OF STATISTICAL SOFTWARE, 2006, 17 (05):
  • [5] birtr: A Package for "The Basics of Item Response Theory Using R"
    Kim, Seock-Ho
    Baker, Frank B.
    APPLIED PSYCHOLOGICAL MEASUREMENT, 2018, 42 (05) : 403 - 404
  • [6] KernSmoothIRT: An R Package for Kernel Smoothing in Item Response Theory
    Mazza, Angelo
    Punzo, Antonio
    McGuire, Brain
    JOURNAL OF STATISTICAL SOFTWARE, 2014, 58 (06): : 1 - 34
  • [7] mirt: A Multidimensional Item Response Theory Package for the R Environment
    Chalmers, R. Philip
    JOURNAL OF STATISTICAL SOFTWARE, 2012, 48 (06): : 1 - 29
  • [8] Person explanatory multidimensional item response theory with the instrument package in R
    Kleinsasser, Michael J.
    Mistry, Ritesh
    Hsieh, Hsing-Fang
    Mccarthy, William J.
    Raghunathan, Trivellore
    BEHAVIOR RESEARCH METHODS, 2024, : 8540 - 8551
  • [9] Item Response Data Analysis Using Stata Item Response Theory Package
    Yang, Ji Seung
    Zheng, Xiaying
    JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2018, 43 (01) : 116 - 129
  • [10] R Package cacIRT: Estimation of Classification Accuracy and Consistency Under Item Response Theory
    Lathrop, Quinn N.
    APPLIED PSYCHOLOGICAL MEASUREMENT, 2014, 38 (07) : 581 - 582