An analysis of the block error probability performance of iterative decoding

被引:45
|
作者
Lentmaier, M
Truhachev, DV
Zigangirov, KS
Costello, DJ
机构
[1] DLR, German Aerosp Ctr, Inst Commun & Navigat, D-82230 Wessling, Germany
[2] Univ Notre Dame, Dept Elect Engn, Notre Dame, IN 46556 USA
[3] Univ Alberta, Elect & Comp Engn Res Fac, Edmonton, AB T6G 2V4, Canada
[4] Inst Informat Transmiss Problems, Moscow, Russia
[5] Univ Notre Dame, Dept Elect Engn, Notre Dame, IN 46556 USA
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
belief propagation; block error probability; convergence analysis; density evolution; iterative decoding; low-density parity-check (LDPC) codes; turbo codes;
D O I
10.1109/TIT.2005.856942
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Asymptotic iterative decoding performance is analyzed for several classes of iteratively decodable codes when the block length of the codes N and the number or iterations I go to infinity. Three classes of codes are considered. These are Gallager's regular low-density parity-check (LDPC) codes, Tanner's generalized LDPC (GLDPC) codes, and the turbo codes due to Berrou et al. It is proved that there exist codes in these classes and iterative decoding algorithms for these codes for which not only the bit error probability P-b, but also the block (frame) error probability P-B, goes to zero as N and I go to infinity.
引用
收藏
页码:3834 / 3855
页数:22
相关论文
共 50 条
  • [1] An error performance analysis of iterative threshold decoding
    Cardinal, C
    Haccoun, D
    Gagnon, F
    2000 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2000, : 187 - 187
  • [2] Block error iterative decoding capacity for LDPC codes
    Jin, H
    Richardson, T
    2005 IEEE International Symposium on Information Theory (ISIT), Vols 1 and 2, 2005, : 52 - 56
  • [3] AVERAGE DIGIT ERROR PROBABILITY IN DECODING A LINEAR BLOCK CODE
    CAIN, JB
    SIMPSON, RS
    PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1968, 56 (10): : 1731 - &
  • [4] Bounds on the error probability of ML decoding for block and turbo-block codes
    Sason, Igal
    Shamai, Shlomo
    Annales des Telecommunications/Annals of Telecommunications, 54 (03): : 183 - 200
  • [5] COMPUTATION OF PROBABILITY OF POST-DECODING ERROR EVENTS FOR BLOCK CODES
    HUNTOON, ZM
    MICHELSON, AM
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1977, 23 (03) : 399 - 403
  • [6] TECHNIQUES OF BOUNDING THE PROBABILITY OF DECODING ERROR FOR BLOCK CODED MODULATION STRUCTURES
    HERZBERG, H
    POLTYREV, G
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (03) : 903 - 911
  • [7] Theoretical analysis of bit error probability for maximum a posteriori probability decoding
    Yoshikawa, H
    2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 2003, : 276 - 276
  • [8] AN IMPROVED UNION BOUND ON BLOCK ERROR-PROBABILITY FOR CLOSEST COSET DECODING
    TOMITA, K
    TAKATA, T
    KASAMI, T
    LIN, S
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1995, E78A (09) : 1077 - 1085
  • [9] Upper Bounds on the Error Probability for the Ensemble of Linear Block Codes with Mismatched Decoding
    Niinomi, Toshihiro
    Yagi, Hideki
    Hirasawa, Shigeichi
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2022, E105A (03) : 363 - 371
  • [10] Upper Bounds on the Error Probability for the Ensemble of Linear Block Codes with Mismatched Decoding
    Niinomi, Toshihiro
    Yagi, Hideki
    Hirasawa, Shigeichi
    PROCEEDINGS OF 2020 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS (ISITA2020), 2020, : 151 - 155