The momentary Fourier transformation derived from recursive matrix transformations

被引:0
|
作者
Albrecht, S
Cumming, I
Dudas, J
机构
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The momentary Fourier transform (MFT) computes the DFT of a discrete-time sequence for every new sample of the sequence. It has an efficient recursive form, and an alternate derivation is given using matrix transformations. A recursive form of the inverse MFT is also given, which is particularly efficient as it involves no multiplications.
引用
收藏
页码:337 / 340
页数:4
相关论文
共 50 条
  • [1] ON RECURSIVE DISCRETE FOURIER TRANSFORMATION
    BITMEAD, RR
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1982, 30 (02): : 319 - 322
  • [2] RECURSIVE DISCRETE FOURIER TRANSFORMATION
    HOSTETTER, GH
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1980, 28 (02): : 184 - 190
  • [3] A RECURSIVE FAST FOURIER TRANSFORMATION ALGORITHM
    VARKONYIKOCZY, AR
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1995, 42 (09): : 614 - 616
  • [5] Recursive residual Fourier transformation for single image deraining
    Zhiyuan Bao
    Mingwen Shao
    Yecong Wan
    Yuanjian Qiao
    International Journal of Machine Learning and Cybernetics, 2024, 15 : 1743 - 1754
  • [6] Recursive residual Fourier transformation for single image deraining
    Bao, Zhiyuan
    Shao, Mingwen
    Wan, Yecong
    Qiao, Yuanjian
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (05) : 1743 - 1754
  • [7] RECURSIVE DISCRETE FOURIER TRANSFORMATION WITH UNEVENLY SPACED DATA
    HOSTETTER, GH
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1983, 31 (01): : 206 - 209
  • [8] A Recursive Matrix Approach to Spectral Transformations for Digital Filters
    Goodman, Thomas J.
    Aburdene, Maurice F.
    2009 43RD ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS, VOLS 1 AND 2, 2009, : 769 - +
  • [10] Matrix transformations of sequences and applications in Fourier analysis
    Goginava, Ushangi
    Omira, Sawsan
    Abdel-Latif, Reem
    Alkrinat, Tasnem
    HELIYON, 2024, 10 (08)