Slantwise Convection in the Irminger Sea

被引:7
|
作者
Le Bras, I. A-A [1 ]
Callies, J. [2 ]
Straneo, F. [3 ]
Bilo, T. C. [3 ]
Holte, J. [3 ]
Johnson, H. L. [4 ]
机构
[1] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA
[2] CALTECH, Pasadena, CA 91125 USA
[3] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA
[4] Univ Oxford, Dept Earth Sci, Oxford, Oxon, England
基金
美国国家科学基金会; 英国自然环境研究理事会;
关键词
LABRADOR SEA; SYMMETRIC INSTABILITY; WATER FORMATION; POTENTIAL VORTICITY; ENERGY-DISSIPATION; DEEP CONVECTION; FRESH-WATER; OCEAN; CIRCULATION; SCALE;
D O I
10.1029/2022JC019071
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
The subpolar North Atlantic is a site of significant carbon dioxide, oxygen, and heat exchange with the atmosphere. This exchange, which regulates transient climate change and prevents large-scale hypoxia throughout the North Atlantic, is thought to be mediated by vertical mixing in the ocean's surface mixed layer. Here we present observational evidence that waters deeper than the conventionally defined mixed layer are affected directly by atmospheric forcing in this region. When northerly winds blow along the Irminger Sea's western boundary current, the Ekman response pushes denser water over lighter water, potentially triggering slantwise convection. We estimate that this down-front wind forcing is four times stronger than air-sea heat flux buoyancy forcing and can mix waters to several times the conventionally defined mixed layer depth. Slantwise convection is not included in most large-scale ocean models, which likely limits their ability to accurately represent subpolar water mass transformations and deep ocean ventilation.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Winter convection in the Irminger Sea in 2004–2014
    S. V. Gladyshev
    V. S. Gladyshev
    A. S. Falina
    A. A. Sarafanov
    [J]. Oceanology, 2016, 56 : 326 - 335
  • [2] Open-ocean convection in the Irminger Sea
    Bacon, S
    Gould, WJ
    Jia, YL
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2003, 30 (05)
  • [3] Winter Convection in the Irminger Sea in 2004-2014
    Gladyshev, S. V.
    Gladyshev, V. S.
    Falina, A. S.
    Sarafanov, A. A.
    [J]. OCEANOLOGY, 2016, 56 (03) : 326 - 335
  • [4] Deep Convection in the Irminger Sea Observed with a Dense Mooring Array
    de Jong, M. Femke
    Oltmanns, Marilena
    Karstensen, Johannes
    de Steur, Laura
    [J]. OCEANOGRAPHY, 2018, 31 (01) : 50 - 59
  • [5] Deep convection in the Irminger Sea forced by the Greenland tip jet
    Robert S. Pickart
    Michael A. Spall
    Mads Hvid Ribergaard
    G. W. K. Moore
    Ralph F. Milliff
    [J]. Nature, 2003, 424 : 152 - 156
  • [6] Deep convection in the Irminger Sea forced by the Greenland tip jet
    Pickart, RS
    Spall, MA
    Ribergaard, MH
    Moore, GWK
    Milliff, RF
    [J]. NATURE, 2003, 424 (6945) : 152 - 156
  • [7] Coherence of Deep Convection in the Irminger Sea with Oceanic Heat Advection
    Iakovleva, D. A.
    Bashmachnikov, I. L.
    Diansky, N. A.
    [J]. OCEANOLOGY, 2023, 63 (SUPPL 1) : S1 - S10
  • [8] Localization of areas of deep convection in the Nordic seas, the Labrador Sea and the Irminger Sea
    Fedorov, A. M.
    Bashmachnikov, I. L.
    Belonenko, T., V
    [J]. VESTNIK OF SAINT PETERSBURG UNIVERSITY EARTH SCIENCES, 2018, 63 (03): : 345 - 362
  • [9] Slantwise convection on fluid planets
    O'Neill, Morgan E.
    Kaspi, Yohai
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (20) : 10611 - 10620
  • [10] Arrival of New Great Salinity Anomaly Weakens Convection in the Irminger Sea
    Bilo, T. C.
    Straneo, F.
    Holte, J.
    Le Bras, I. A-A
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (11)