On approximation by a class of new Bernstein type operators

被引:17
|
作者
Deo, Naokant [1 ]
Noor, Muhammad Aslam [2 ]
Siddiqui, M. A. [3 ]
机构
[1] Delhi Coll Engn, Dept Appl Math, Delhi 110042, India
[2] COMSATS Inst Informat Technol, Dept Math, Islamabad, Pakistan
[3] Govt VYTPG Autonomous Coll, Dept Math, Durg, CG, India
关键词
Bernstein operators; linear combinations;
D O I
10.1016/j.amc.2007.12.056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with a new type of the classical Bernstein operators where the function is evaluated at intervals [0; 1- 1/n+1]. We also make extensive study simultaneous approximation by the linear combination L(n)(f, k, x) of these new Bernstein type operators L(n)(f). At the end of this paper we have given an other modi. cation of these operators. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:604 / 612
页数:9
相关论文
共 50 条
  • [1] Approximation of functions by a new class of generalized Bernstein–Schurer operators
    Faruk Özger
    H. M. Srivastava
    S. A. Mohiuddine
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [2] On the rates of approximation of Bernstein type operators
    Zeng, XM
    Cheng, FF
    [J]. JOURNAL OF APPROXIMATION THEORY, 2001, 109 (02) : 242 - 256
  • [3] Approximation of a kind of new Bernstein-Bezier type operators
    Ren, Mei-Ying
    Zeng, Xiao-Ming
    Zhang, Wen-Hui
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 23 (02) : 355 - 364
  • [4] ON APPROXIMATION PROPERTIES OF A NEW TYPE OF BERNSTEIN-DURRMEYER OPERATORS
    Acar, Tuncer
    Aral, Ali
    Gupta, Vijay
    [J]. MATHEMATICA SLOVACA, 2015, 65 (05) : 1107 - 1122
  • [5] OPTIMAL APPROXIMATION CLASS FOR MULTIVARIATE BERNSTEIN OPERATORS
    DITZIAN, Z
    ZHOU, X
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1993, 158 (01) : 93 - 120
  • [6] Approximation of functions by a new class of generalized Bernstein-Schurer operators
    Ozger, Faruk
    Srivastava, H. M.
    Mohiuddine, S. A.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (04)
  • [7] A new class of Bernstein-type operators obtained by iteration
    Paltanea, Radu
    Smuc, Mihaela
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (02): : 409 - 422
  • [8] SOME APPROXIMATION RESULTS ON A CLASS OF NEW TYPE λ-BERNSTEIN POLYNOMIALS
    Aslan, Resat
    Mursaleen, Mohammad
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2022, 16 (02): : 445 - 462
  • [9] Approximation properties of the new type generalized Bernstein-Kantorovich operators
    Kara, Mustafa
    [J]. AIMS MATHEMATICS, 2022, 7 (03): : 3826 - 3844
  • [10] Approximation by λ-Bernstein type operators on triangular domain
    Cai, Qing-Bo
    Khan, Asif
    Mansoori, Mohd Shanawaz
    Iliyas, Mohammad
    Khan, Khalid
    [J]. FILOMAT, 2023, 37 (06) : 1941 - 1958