Robust automatic target detection/recognition system for second generation FLIR imagery

被引:1
|
作者
Zhao, HB [1 ]
Shah, S [1 ]
Choi, JH [1 ]
Nair, D [1 ]
Aggarwal, JK [1 ]
机构
[1] Univ Texas, Dept Elect & Comp Engn, Comp & Vis Res Ctr, Austin, TX 78712 USA
关键词
D O I
10.1109/ACV.1998.732898
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic target detection and recognition (ATD/R) is of crucial interest to the defense community. We present a robust ATD/R system developed at the CVRC at UT-Austin for recognition in second generation forward looking infrared (FLIR) images. An experiment conducted on 1,930 FLIR images shows that this ATR system can achieve recognition with a high degree of accuracy and a low false alarm rate. This demo first presents a brief overview of the whole methodology, then shows the detailed procedures and temporary outputs step by step, by running this ATR system on typical low-contrast FLIR images. Results and examples are presented at the end of the demonstration.
引用
收藏
页码:262 / 263
页数:2
相关论文
共 50 条
  • [1] Robust automatic target recognition in second generation FLIR images
    Nair, D
    Aggarwal, JK
    [J]. THIRD IEEE WORKSHOP ON APPLICATIONS OF COMPUTER VISION - WACV '96, PROCEEDINGS, 1996, : 194 - 201
  • [2] Robust Automatic Target Recognition in FLIR imagery
    Soyman, Yusuf
    [J]. AUTOMATIC TARGET RECOGNITION XXII, 2012, 8391
  • [3] A robust target tracking algorithm for FLIR imagery
    Chan, Alex Lipchen
    [J]. AUTOMATIC TARGET RECOGNITION XX; ACQUISITION, TRACKING, POINTING, AND LASER SYSTEMS TECHNOLOGIES XXIV; AND OPTICAL PATTERN RECOGNITION XXI, 2010, 7696
  • [4] A Neural Network based target detection system for FLIR imagery
    Dwan, CM
    Der, SZ
    [J]. APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN IMAGE PROCESSING III, 1998, 3307 : 14 - 21
  • [5] Efficient target detection in cluttered FLIR imagery
    Khan, JF
    Alam, MS
    [J]. Optical Pattern Recognition XVI, 2005, 5816 : 39 - 53
  • [6] Automatic target recognition of cluttered FLIR imagery using multistage feature extraction and feature repair
    Rizvi, SA
    Nasrabadi, NM
    [J]. APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN IMAGE PROCESSING VII, 2003, 5015 : 1 - 10
  • [7] Robust automatic target tracking based on a Bayesian ego-motion compensation framework for airborne FLIR imagery
    del-Blanco, Carlos R.
    Jaureguizar, Fernando
    Garcia, Narciso
    Salgado, Luis
    [J]. AUTOMATIC TARGET RECOGNITION XIX, 2009, 7335
  • [8] A Knowledge-Based Technique for Robust Recognition of Bridges in FLIR Imagery
    Shahzad, Danish
    Abdulaziz, M. Ali
    Nawaz, Rab
    Mumtaz, Adeel
    [J]. PROCEEDINGS OF 2018 15TH INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES AND TECHNOLOGY (IBCAST), 2018, : 353 - 356
  • [9] Target detection in FLIR imagery using independent component analysis
    Sadeque, A. Z.
    Alam, M. S.
    [J]. AUTOMATIC TARGET RECOGNITION XVI, 2006, 6234
  • [10] An automatic target recognition system for hyperspectral imagery using ORASIS
    Gillis, D
    Palmadesso, P
    Bowles, J
    [J]. ALGORITHMS FOR MULTISPECTRAL, HYPERSPECTRAL AND ULTRASPECTRAL IMAGERY VII, 2001, 4381 : 34 - 43