A cubic trigonometric B-spline collocation approach for the fractional sub-diffusion equations

被引:27
|
作者
Yaseen, Muhammad [1 ]
Abbas, Muhammad [1 ]
Ismail, Ahmad Izani [2 ]
Nazir, Tahir [1 ]
机构
[1] Univ Sargodha, Dept Math, Sargodha 40100, Pakistan
[2] Univ Sains Malaysia, Sch Math Sci, George Town 11800, Malaysia
关键词
Fractional sub-diffusion equation; Trigonometric basis functions; Cubic trigonometric B-splines method; Stability; FINITE-DIFFERENCE METHOD; NUMERICAL-SOLUTION; DISPERSION; STABILITY; DYNAMICS;
D O I
10.1016/j.amc.2016.08.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A cubic trigonometric B-spline collocation approach for the numerical solution of fractional sub-diffusion equation is presented in this paper. The approach is based on the usual finite difference scheme to discretize the time derivative while the approximation of the second order derivative with respect to space is obtained by the cubic trigonometric B-spline functions with the help of Grilnwald Letnikov discretization of the Riemann Liouville derivative. The scheme is shown to be stable using the Fourier method and the accuracy of the scheme is tested by application to a test problem. The results of the numerical test verify the accuracy and efficiency of the proposed algorithm. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:311 / 319
页数:9
相关论文
共 50 条
  • [1] An Extended Cubic B-spline Collocation Scheme for Time Fractional Sub-diffusion Equation
    Akram, Tayyaba
    Abbas, Muhammad
    Ismail, Ahmad Izani
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND TECHNOLOGY 2018 (MATHTECH 2018): INNOVATIVE TECHNOLOGIES FOR MATHEMATICS & MATHEMATICS FOR TECHNOLOGICAL INNOVATION, 2019, 2184
  • [2] An exponential B-spline collocation method for the fractional sub-diffusion equation
    Xiaogang Zhu
    Yufeng Nie
    Zhanbin Yuan
    Jungang Wang
    Zongze Yang
    [J]. Advances in Difference Equations, 2017
  • [3] An exponential B-spline collocation method for the fractional sub-diffusion equation
    Zhu, Xiaogang
    Nie, Yufeng
    Yuan, Zhanbin
    Wang, Jungang
    Yang, Zongze
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [4] A modified trigonometric cubic B-spline collocation technique for solving the time-fractional diffusion equation
    Dhiman, Neeraj
    Huntul, M. J.
    Tamsir, Mohammad
    [J]. ENGINEERING COMPUTATIONS, 2021, 38 (07) : 2921 - 2936
  • [5] Solving Buckmaster Equation Using Cubic B-Spline And Cubic Trigonometric B-Spline Collocation Methods
    Chanthrasuwan, Maveeka
    Asri, Nur Asreenawaty Mohd
    Abd Hamid, Nur Nadiah
    Abd Majid, Ahmad
    Azmi, Amirah
    [J]. PROCEEDINGS OF THE 24TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM24): MATHEMATICAL SCIENCES EXPLORATION FOR THE UNIVERSAL PRESERVATION, 2017, 1870
  • [6] An efficient cubic trigonometric B-spline collocation scheme for the time-fractional telegraph equation
    Muhammad Yaseen
    Muhammad Abbas
    [J]. Applied Mathematics-A Journal of Chinese Universities, 2020, 35 : 359 - 378
  • [7] A B-spline collocation method for solving fractional diffusion and fractional diffusion-wave equations
    Esen, A.
    Tasbozan, O.
    Ucar, Y.
    Yagmurlu, N. M.
    [J]. TBILISI MATHEMATICAL JOURNAL, 2015, 8 (02) : 181 - 193
  • [8] An efficient cubic trigonometric B-spline collocation scheme for the time-fractional telegraph equation
    Muhammad Yaseen
    Muhammad Abbas
    [J]. Applied Mathematics:A Journal of Chinese Universities, 2020, 35 (03) : 359 - 378
  • [9] An efficient cubic trigonometric B-spline collocation scheme for the time-fractional telegraph equation
    Yaseen, Muhammad
    Abbas, Muhammad
    [J]. APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2020, 35 (03): : 359 - 378
  • [10] Trigonometric cubic B-spline collocation algorithm for numerical solutions of reaction–diffusion equation systems
    Aysun Tok Onarcan
    Nihat Adar
    Idiris Dag
    [J]. Computational and Applied Mathematics, 2018, 37 : 6848 - 6869