3D graphics, virtual reality, and motion-onset visual evoked potentials in neurogaming

被引:12
|
作者
Beveridge, R. [1 ]
Wilson, S. [1 ]
Coyle, D. [1 ]
机构
[1] Univ Ulster, Intelligent Syst Res Ctr, Derry, North Ireland
基金
英国工程与自然科学研究理事会;
关键词
Brain-computer interface; Motion-onset visually evoked potentials; Electroencephalography; Video gaming; 3-Dimensional; Graphics; Liquid crystal display; Oculus rift; Virtual reality; BRAIN-COMPUTER-INTERFACE; BCI;
D O I
10.1016/bs.pbr.2016.06.006
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A brain-computer interface (BCI) offers movement-free control of a computer application and is achieved by reading and translating the cortical activity of the brain into semantic control signals. Motion-onset visual evoked potentials (mVEP) are neural potentials employed in BCIs and occur when motion-related stimuli are attended visually. mVEP dynamics are correlated with the position and timing of the moving stimuli. To investigate the feasibility of utilizing the mVEP paradigm with video games of various graphical complexities including those of commercial quality, we conducted three studies over four separate sessions comparing the performance of classifying five mVEP responses with variations in graphical complexity and style, in-game distractions, and display parameters surrounding mVEP stimuli. To investigate the feasibility of utilizing contemporary presentation modalities in neurogaming, one of the studies compared mVEP classification performance when stimuli were presented using the oculus rift virtual reality headset. Results from 31 independent subjects were analyzed offline. The results show classification performances ranging up to 90% with variations in conditions in graphical complexity having limited effect on mVEP performance; thus, demonstrating the feasibility of using the mVEP paradigm within BCI-based neurogaming.
引用
收藏
页码:329 / 353
页数:25
相关论文
共 50 条
  • [1] Neurogaming With Motion-Onset Visual Evoked Potentials (mVEPs): Adults Versus Teenagers
    Beveridge, Ryan
    Wilson, Shane
    Callaghan, Michael
    Coyle, Damien
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2019, 27 (04) : 572 - 581
  • [2] Motion adaptation in chromatic motion-onset visual evoked potentials
    McKeefry D.J.
    Documenta Ophthalmologica, 2001, 103 (3) : 229 - 251
  • [3] Motion-onset visual evoked potentials improve the diagnosis of glaucoma
    Kubova, Z
    Kuba, M
    Hrochova, J
    Sverak, J
    DOCUMENTA OPHTHALMOLOGICA, 1996, 92 (03) : 211 - 221
  • [4] Visual evoked potentials related to motion-onset are modulated by attention
    Torriente, I
    Valdes-Sosa, M
    Ramirez, D
    Bobes, MA
    VISION RESEARCH, 1999, 39 (24) : 4122 - 4139
  • [5] Control of humanoid robot via motion-onset visual evoked potentials
    Li, Wei
    Li, Mengfan
    Zhao, Jing
    FRONTIERS IN SYSTEMS NEUROSCIENCE, 2015, 8
  • [6] CLINICAL-APPLICATION OF MOTION-ONSET VISUAL EVOKED-POTENTIALS
    KUBOVA, Z
    KUBA, M
    DOCUMENTA OPHTHALMOLOGICA, 1992, 81 (02) : 209 - 218
  • [7] Time course of motion adaptation: Motion-onset visual evoked potentials and subjective estimates
    Hoffmann, M
    Dorn, TJ
    Bach, M
    VISION RESEARCH, 1999, 39 (03) : 437 - 444
  • [8] MOTION-ONSET VISUAL-EVOKED POTENTIALS AS A FUNCTION OF RETINAL ECCENTRICITY IN MAN
    SCHLYKOWA, L
    VANDIJK, BW
    EHRENSTEIN, WH
    COGNITIVE BRAIN RESEARCH, 1993, 1 (03): : 169 - 174
  • [9] Motion-onset visual evoked potentials - Important tool in vision and eye research
    Kubova, Z.
    Kuba, M.
    Kremlacek, J.
    Langrova, J.
    Szanyi, J.
    Vit, F.
    Chutna, M.
    ACTA OPHTHALMOLOGICA, 2013, 91
  • [10] Motion-onset and pattern-reversal visual evoked potentials in diagnostics of neuroborreliosis
    Kubova, Zuzana
    Szanyi, Jana
    Langrova, Jana
    Kremlacek, Jan
    Kuba, Miroslav
    Honegr, Karel
    JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 2006, 23 (05) : 416 - 420