Structural Sparsity in Multiple Measurements

被引:6
|
作者
Bossmann, F. [1 ]
Krause-Solberg, S. [2 ]
Maly, J. [3 ]
Sissouno, N. [4 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
[2] DESY, Helmholtz Imaging, D-22607 Hamburg, Germany
[3] KU Eichstatt, D-85072 Eichstatt, Germany
[4] Tech Univ Munich, Fac Math, D-85748 Garching, Germany
基金
美国国家科学基金会;
关键词
Seismic measurements; Data models; Testing; Image reconstruction; Computational modeling; Compressed sensing; Earth; Distributed compressed sensing; multiple measurements; sparse approximation; structured sparsity; non-convex LASSO; LINEAR INVERSE PROBLEMS; RECONSTRUCTION; APPROXIMATION; ALGORITHMS; REPRESENTATIONS; RECOVERY; SIGNALS;
D O I
10.1109/TSP.2021.3137599
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a novel sparsity model for distributed compressed sensing in the multiple measurement vectors (MMV) setting. Our model extends the concept of row-sparsity to allow more general types of structured sparsity arising in a variety of applications like, e.g., seismic exploration and non-destructive testing. To reconstruct structured data from observed measurements, we derive a non-convex but well-conditioned LASSO-type functional. By exploiting the convex-concave geometry of the functional, we design a projected gradient descent algorithm and show its effectiveness in extensive numerical simulations, both on toy and real data.
引用
收藏
页码:280 / 291
页数:12
相关论文
共 50 条
  • [1] Structural sparsity
    Nesetril, J.
    de Mendez, P. Ossona
    RUSSIAN MATHEMATICAL SURVEYS, 2016, 71 (01) : 79 - 107
  • [2] SPARSITY IN MULTIPLE KERNEL LEARNING
    Koltchinskii, Vladimir
    Yuan, Ming
    ANNALS OF STATISTICS, 2010, 38 (06): : 3660 - 3695
  • [3] Estimation of Sparsity via Simple Measurements
    Agarwal, Abhishek
    Flodin, Larkin
    Mazumdar, Arya
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 456 - 460
  • [4] Toward structural sparsity: an explicit approach
    Luo, Dijun
    Ding, Chris
    Huang, Heng
    KNOWLEDGE AND INFORMATION SYSTEMS, 2013, 36 (02) : 411 - 438
  • [5] Model Predictive Control and Structural Sparsity
    Javier Florez, Alvaro
    Felipe Giraldo, Luis
    2019 IEEE 4TH COLOMBIAN CONFERENCE ON AUTOMATIC CONTROL (CCAC): AUTOMATIC CONTROL AS KEY SUPPORT OF INDUSTRIAL PRODUCTIVITY, 2019,
  • [6] On Structural Rank and Resilience of Sparsity Patterns
    Belabbas, Mohamed-Ali
    Chen, Xudong
    Zelazo, Daniel
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (08) : 4783 - 4795
  • [7] Structural properties of affine sparsity constraints
    Dong, Hongbo
    Ahn, Miju
    Pang, Jong-Shi
    MATHEMATICAL PROGRAMMING, 2019, 176 (1-2) : 95 - 135
  • [8] Structural Sparsity in Networked Control Systems
    Florez, Alvaro Javier
    Giraldo, Luis Felipe
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2020, 50 (12): : 5152 - 5161
  • [9] Structural properties of affine sparsity constraints
    Hongbo Dong
    Miju Ahn
    Jong-Shi Pang
    Mathematical Programming, 2019, 176 : 95 - 135
  • [10] Forecasting cosmological parameter constraints using multiple sparsity measurements as tracers of the mass profiles of dark matter haloes
    Corasaniti, P. S.
    Le Brun, A. M. C.
    Richardson, T. R. G.
    Rasera, Y.
    Ettori, S.
    Arnaud, M.
    Pratt, G. W.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 516 (01) : 437 - 452