DIFFERENCES AND SIMILARITIES IN THE PROCESSING OF AIRBORNE AND SPACEBORNE HYPERSPECTRAL DATA SHOWN ON HYSPEX AND ENMAP PROCESSING CHAINS

被引:0
|
作者
Schneider, Mathias [1 ]
Baumgartner, Andreas [1 ]
Schwind, Peter [1 ]
Carmona, Emiliano [1 ]
Storch, Tobias [1 ]
机构
[1] German Aerosp Ctr DLR, Remote Sensing Technol Inst IMF, Munchener Str 20, D-82234 Wessling, Germany
关键词
Hyperspectral; EnMAP; HySpex;
D O I
10.1109/igarss.2019.8898527
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
When working with hyperspectral data, it is very important, that the data is properly pre-processed in terms of systematic radiometric and spectral correction, geometric correction as well as atmospheric correction. Airborne and spacebome sensors show some similarities regarding the processing, but also some differences. In this paper, these similarities and differences are discussed on the example of the HySpex processing chain in the generic processing environment Catena and the EnMAP processor that is currently developed at DLR. The paper presents the different sensors and their properties and gives an overview of the different workflows and the used algorithms.
引用
收藏
页码:9164 / 9167
页数:4
相关论文
共 50 条
  • [1] Processing airborne, spaceborne hyperspectral and GIS data in urban areas
    Bhaskaran, S
    Datt, B
    IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 2401 - 2403
  • [2] Airborne Hyperspectral Data Acquisition and Processing in the Arctic: A Pilot Study Using the Hyspex Imaging Spectrometer for Wetland Mapping
    Cristobal, Jordi
    Graham, Patrick
    Prakash, Anupma
    Buchhorn, Marcel
    Gens, Rudi
    Guldager, Nikki
    Bertram, Mark
    REMOTE SENSING, 2021, 13 (06)
  • [3] ENPT - AN ALTERNATIVE PRE-PROCESSING CHAIN FOR HYPERSPECTRAL ENMAP DATA
    Scheffler, Daniel
    Brell, Maximilian
    Bohn, Niklas
    Alvarado, Leonardo
    Soppa, Mariana A.
    Segl, Karl
    Bracher, Astrid
    Chabrillat, Sabine
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7416 - 7418
  • [4] Evaluation of Airborne HySpex and Spaceborne PRISMA Hyperspectral Remote Sensing Data for Soil Organic Matter and Carbonates Estimation
    Angelopoulou, Theodora
    Chabrillat, Sabine
    Pignatti, Stefano
    Milewski, Robert
    Karyotis, Konstantinos
    Brell, Maximilian
    Ruhtz, Thomas
    Bochtis, Dionysis
    Zalidis, George
    REMOTE SENSING, 2023, 15 (04)
  • [5] Processing/analysis capabilities for data acquired with hyperspectral spaceborne sensors
    Staenz, K
    Schwarz, J
    Cheriyan, J
    ACTA ASTRONAUTICA, 1996, 39 (9-12) : 923 - 931
  • [6] Automation of hyperspectral airborne remote sensing data processing
    V. V. Kozoderov
    V. D. Egorov
    Izvestiya, Atmospheric and Oceanic Physics, 2014, 50 : 853 - 866
  • [7] Automation of hyperspectral airborne remote sensing data processing
    Kozoderov, V. V.
    Egorov, V. D.
    IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2014, 50 (09) : 853 - 866
  • [8] UNCERTAINTY ESTIMATION FOR SPACEBORNE HYPERSPECTRAL DATA PRODUCTS AND THE RELEVANCE TO THE DESIS AND ENMAP MISSION
    Bachmann, Martin
    Kerr, Gregoire
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 1916 - 1919
  • [9] PROCESSING AND CALIBRATION ACTIVITIES OF THE FUTURE HYPERSPECTRAL SATELLITE MISSION ENMAP
    de Miguel, A.
    Bachmann, M.
    Makasy, C.
    Mueller, R.
    Neumann, A.
    Palubinskas, G.
    Richter, R.
    Schneider, M.
    Storch, T.
    Walzel, T.
    Wang, X.
    Heege, T.
    Kiselev, V.
    2010 CANADIAN GEOMATICS CONFERENCE AND SYMPOSIUM OF COMMISSION I, ISPRS CONVERGENCE IN GEOMATICS - SHAPING CANADA'S COMPETITIVE LANDSCAPE, 2010, 38
  • [10] Design and implementation of airborne hyperspectral data processing platform compatible with intelligent processing algorithms
    Gong, Kecheng
    Peng, Yuanxi
    Jiang, Tian
    Hao, Hao
    Zhang, Lixiong
    Yu, Yongtao
    SECOND TARGET RECOGNITION AND ARTIFICIAL INTELLIGENCE SUMMIT FORUM, 2020, 11427