Fisher information of orthogonal hypergeometric polynomials

被引:20
|
作者
Sánchez-Ruiz, J
Dehesa, JS
机构
[1] Univ Carlos III Madrid, Dept Matemat, Madrid 28911, Spain
[2] Univ Granada, Inst Carlos I Fis Teor & Computac, E-18071 Granada, Spain
[3] Univ Granada, Dept Fis Moderna, E-18071 Granada, Spain
关键词
classical orthogonal polynomials; Fisher information; second-order differential equations; probability measures;
D O I
10.1016/j.cam.2004.09.062
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The probability densities of position and momentum of many quantum systems have the form p(x) proportional to P-n(2) (x)omega(x), where {p(n)(x)} denotes a sequence of hypergeometric-type polynomials orthogonal with respect to the weight function omega(x). Here we derive the explicit expression of the Fisher information I = integral dx[rho',(x)](2)/rho(x) corresponding to this kind of distributions, in terms of the coefficients of the second-order differential equation satisfied by the polynomials p, (x). We work out in detail the particular cases of the classical Hermite, Laguerre and Jacobi polynomials, for which we find the value of Fisher information in closed analytical form and study its asymptotic behaviour in the large n limit. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:150 / 164
页数:15
相关论文
共 50 条
  • [1] Fisher information of orthogonal polynomials I
    Dominici, Diego
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (06) : 1511 - 1518
  • [2] Relative Fisher information of discrete classical orthogonal polynomials
    Dehesa, J. S.
    Sanchez-Moreno, P.
    Yanez, R. J.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2012, 18 (03) : 489 - 508
  • [3] Cramer-Rao information plane of orthogonal hypergeometric polynomials
    Dehesa, JS
    Sánchez-Moreno, P
    Yáñez, RJ
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 186 (02) : 523 - 541
  • [4] ORTHOGONAL POLYNOMIALS OF HYPERGEOMETRIC TYPE
    ALSALAM, NA
    DUKE MATHEMATICAL JOURNAL, 1966, 33 (01) : 109 - &
  • [5] SOME HYPERGEOMETRIC ORTHOGONAL POLYNOMIALS
    WILSON, JA
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1980, 11 (04) : 690 - 701
  • [6] A SET OF HYPERGEOMETRIC ORTHOGONAL POLYNOMIALS
    ASKEY, R
    WILSON, J
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1982, 13 (04) : 651 - 655
  • [7] Parameter-based Fisher's information of orthogonal polynomials
    Dehesa, J. S.
    Olmos, B.
    Yanez, R. J.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 214 (01) : 136 - 147
  • [8] Complexity analysis of hypergeometric orthogonal polynomials
    Dehesa, J. S.
    Guerrero, A.
    Sanchez-Moreno, P.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 284 : 144 - 154
  • [9] Expansions in series of orthogonal hypergeometric polynomials
    Sanchez-Ruiz, J
    Dehesa, JS
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 89 (01) : 155 - 170
  • [10] HYPERGEOMETRIC ORTHOGONAL POLYNOMIALS OF JACOBI TYPE
    Bernstein, Joseph
    Gourevitch, Dmitry
    Sahi, Siddhartha
    arXiv,