Estimation of forest stand characteristics using individual tree detection, stochastic geometry and a sequential spatial point process model

被引:2
|
作者
Mehtatalo, Lauri [1 ]
Yazigi, Adil [2 ]
Kansanen, Kasper [2 ]
Packalen, Petteri [1 ]
Lahivaara, Timo [3 ]
Maltamo, Matti [4 ]
Myllymaki, Mari [5 ]
Penttinen, Antti [6 ]
机构
[1] Nat Resources Inst Finland Luke, Yliopistokatu 6, Joensuu 80100, Finland
[2] Univ Eastern Finland, Sch Comp, Postal Box 111, Joensuu 80101, Finland
[3] Univ Eastern Finland, Dept Appl Phys, Postal Box 1627, Kuopio, Finland
[4] Univ Eastern Finland, Sch Forest Sci, Postal Box 111, Joensuu 80101, Finland
[5] Nat Resources Inst Finland Luke, Latokartanonkaari 9, Helsinki 00790, Finland
[6] Univ Jyvaskyla, POB 35, FI-40014 Jyvaskyla, Finland
基金
芬兰科学院;
关键词
Forest inventory; Airborne Laser Scanning; Horvitz-Thompson-like estimator; Stand density; Tree height; DENSITY; HEIGHT;
D O I
10.1016/j.jag.2022.102920
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Airborne Laser Scanning (ALS) results in point-wise measurements of canopy height, which can further be used for Individual Tree Detection (ITD). However, ITD cannot find all trees because small trees can hide below larger tree crowns. Here we discuss methods where the plot totals and means of tree-level characteristics are estimated in such context. The starting point is a previously presented Horvitz-Thompson-like (HT-like) estimator, where the detectability is based on the larger tree crowns and a tuning parameter a that models the detection condition. We propose a new method which is based on modeling the spatial pattern of hidden tree locations using a sequential spatial point process model, with a tuning parameter 61. We also explore whether the variability of the tuning parameters a and 61 can be predicted using ALS features to improve the predictions. The accuracy of stand density, dominant height and mean height is used as comparison criteria in a cross-validation procedure. The HT-like estimator with empirically estimated tuning parameter a performed the best. The overall performance of the new method was comparable. The new method was computationally less demanding, which makes it attractive for practical use.
引用
收藏
页数:9
相关论文
共 21 条
  • [1] Estimating forest stand density and structure using Bayesian individual tree detection, stochastic geometry, and distribution matching
    Kansanen, Kasper
    Vauhkonen, Jari
    Lahivaara, Timo
    Seppanen, Aku
    Maltamo, Matti
    Mehtatalo, Lauri
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2019, 152 : 66 - 78
  • [2] Stand density estimators based on individual tree detection and stochastic geometry
    Kansanen, Kasper
    Vauhkonen, Jari
    Lahivaara, Timo
    Mehtatalo, Lauri
    [J]. CANADIAN JOURNAL OF FOREST RESEARCH, 2016, 46 (11) : 1359 - 1366
  • [3] Influence of the correction method of CHM-based Individual Tree Detection results on the estimation of forest stand characteristics
    Lisiewicz, Maciej
    Kaminska, Agnieszka
    Sterenczak, Krzysztof
    [J]. SYLWAN, 2022, 166 (06): : 362 - 377
  • [4] Modeling Forest Tree Data Using Sequential Spatial Point Processes
    Adil Yazigi
    Antti Penttinen
    Anna-Kaisa Ylitalo
    Matti Maltamo
    Petteri Packalen
    Lauri Mehtätalo
    [J]. Journal of Agricultural, Biological and Environmental Statistics, 2022, 27 : 88 - 108
  • [5] Modeling Forest Tree Data Using Sequential Spatial Point Processes
    Yazigi, Adil
    Penttinen, Antti
    Ylitalo, Anna-Kaisa
    Maltamo, Matti
    Packalen, Petteri
    Mehtatalo, Lauri
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2022, 27 (01) : 88 - 108
  • [6] COMPARISON OF STOCHASTIC AND DETERMINISTIC MORTALITY ESTIMATION IN AN INDIVIDUAL TREE BASED STAND GROWTH-MODEL
    WEBER, LA
    EK, AR
    DROESSLER, TD
    [J]. CANADIAN JOURNAL OF FOREST RESEARCH-REVUE CANADIENNE DE RECHERCHE FORESTIERE, 1986, 16 (05): : 1139 - 1141
  • [7] Analysis of Longitudinal Forest Data on Individual-Tree and Whole-Stand Attributes Using a Stochastic Differential Equation Model
    Rupsys, Petras
    Petrauskas, Edmundas
    [J]. FORESTS, 2022, 13 (03):
  • [8] Forest Carbon Density Estimation Using Tree Species Diversity and Stand Spatial Structure Indices
    Li, Tao
    Wu, Xiao-Can
    Wu, Yi
    Li, Ming-Yang
    [J]. FORESTS, 2023, 14 (06):
  • [9] Forest stand characteristics estimation using a most similar neighbor approach and image spatial structure information
    Muinonen, E
    Maltamo, M
    Hyppänen, H
    Vainikainen, V
    [J]. REMOTE SENSING OF ENVIRONMENT, 2001, 78 (03) : 223 - 228
  • [10] Estimation of Forest Stand Volume in Coniferous Plantation from Individual Tree Segmentation Aspect Using UAV-LiDAR
    Zhou, Xinshao
    Ma, Kaisen
    Sun, Hua
    Li, Chaokui
    Wang, Yonghong
    [J]. REMOTE SENSING, 2024, 16 (15)