Safety Quantification of Intersections Using Computer Vision Techniques

被引:1
|
作者
Shirazi, Mohammad Shokrolah [1 ]
Morris, Brendan [1 ]
机构
[1] Univ Nevada, Las Vegas, NV 89154 USA
关键词
D O I
10.1007/978-3-319-27857-5_67
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Vision-based safety analysis is a difficult task since traditional motion-based techniques work poorly when pedestrians and vehicles stop due to traffic signals. This work presents a tracking method in order to provide a robust tracking of pedestrians and vehicles, and quantify safety through investigating the tracks. Surrogate safety measurements are estimated including TTC and DTI values for a highly cluttered video of Las Vegas intersection and the performance of the tracking system is evaluated at detection and tracking steps separately.
引用
收藏
页码:752 / 761
页数:10
相关论文
共 50 条
  • [1] Automated Traffic Volume Analytics at Road Intersections Using Computer Vision Techniques
    Qi, Bozhao
    Zhao, Wei
    Zhang, Haiping
    Jin, Zhihong
    Wang, Xiaohan
    Runge, Troy
    [J]. 2019 5TH INTERNATIONAL CONFERENCE ON TRANSPORTATION INFORMATION AND SAFETY (ICTIS 2019), 2019, : 161 - 169
  • [2] Investigation of safety analysis methods using computer vision techniques
    Shirazi, Mohammad Shokrolah
    Morris, Brendan Tran
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2017, 26 (05)
  • [3] Automatic quantification of spheroidal graphite nodules using computer vision techniques
    Renato F. Pereira
    Valberto E. R. da Silva Filho
    Lorena B. Moura
    N. Arun Kumar
    Auzuir R. de Alexandria
    Victor Hugo C. de Albuquerque
    [J]. The Journal of Supercomputing, 2020, 76 : 1212 - 1225
  • [4] Automatic quantification of spheroidal graphite nodules using computer vision techniques
    Pereira, Renato F.
    da Silva Filho, Valberto E. R.
    Moura, Lorena B.
    Kumar, N. Arun
    de Alexandria, Auzuir R.
    de Albuquerque, Victor Hugo C.
    [J]. JOURNAL OF SUPERCOMPUTING, 2020, 76 (02): : 1212 - 1225
  • [5] Automated Quantification of Brittle Stars in Seabed Imagery Using Computer Vision Techniques
    Buskus, Kazimieras
    Vaiciukynas, Evaldas
    Verikas, Antanas
    Medelyte, Saule
    Siaulys, Andrius
    Saskov, Aleksej
    [J]. SENSORS, 2021, 21 (22)
  • [6] Automated Quantification of Eye Tics Using Computer Vision and Deep Learning Techniques
    Conelea, Christine
    Liang, Hengyue
    DuBois, Megan
    Raab, Brittany
    Kellman, Mia
    Wellen, Brianna
    Jacob, Suma
    Wang, Sonya
    Sun, Ju
    Lim, Kelvin
    [J]. MOVEMENT DISORDERS, 2024, 39 (01) : 183 - 191
  • [7] Computer vision techniques for construction safety and health monitoring
    Seo, JoonOh
    Han, SangUk
    Lee, SangHyun
    Kim, Hyoungkwan
    [J]. ADVANCED ENGINEERING INFORMATICS, 2015, 29 (02) : 239 - 251
  • [8] A Study of the Travel Time of Intersections by Vehicles using Computer Vision
    Shepelev, V. D.
    Glushkov, A., I
    Almetova, Z., V
    Mavrin, V. G.
    [J]. PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON VEHICLE TECHNOLOGY AND INTELLIGENT TRANSPORT SYSTEMS (VEHITS), 2020, : 653 - 658
  • [9] Plumpness recognition and quantification of rapeseeds using computer vision
    Li J.
    Liao G.
    Yu X.
    Tong Z.
    [J]. Journal of Software, 2010, 5 (09) : 1038 - 1047
  • [10] Automated Analysis of Pedestrian Crossing Speed Behavior at Scramble-phase Signalized Intersections Using Computer Vision Techniques
    Hediyeh, Houman
    Sayed, Tarek
    Zaki, Mohamed H.
    Ismail, Karim
    [J]. INTERNATIONAL JOURNAL OF SUSTAINABLE TRANSPORTATION, 2014, 8 (05) : 382 - 397