THE MINIMAL VOLUME ORIENTABLE HYPERBOLIC 2-CUSPED 3-MANIFOLDS

被引:31
|
作者
Agol, Ian [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
D O I
10.1090/S0002-9939-10-10364-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the Whitehead link complement and the (-2,3,8) pretzel link complement are the minimal volume orientable hyperbolic 3-manifolds with two cusps, with volume 3.66... = 4 x Catalan's constant. We use topological arguments to establish the existence of an essential surface which provides a lower bound on volume and strong constraints on the manifolds that realize that lower bound.
引用
收藏
页码:3723 / 3732
页数:10
相关论文
共 50 条
  • [1] The orientable cusped hyperbolic 3-manifolds of minimum volume
    Chun Cao
    G. Robert Meyerhoff
    Inventiones mathematicae, 2001, 146 : 451 - 478
  • [2] The orientable cusped hyperbolic 3-manifolds of minimum volume
    Cao, C
    Meyerhoff, GR
    INVENTIONES MATHEMATICAE, 2001, 146 (03) : 451 - 478
  • [3] Braids, orderings, and minimal volume cusped hyperbolic 3-manifolds
    Kin, Eiko
    Rolfsen, Dale
    GROUPS GEOMETRY AND DYNAMICS, 2018, 12 (03) : 961 - 1004
  • [4] On minimal ideal triangulations of cusped hyperbolic 3-manifolds
    Jaco, William
    Rubinstein, Hyam
    Spreer, Jonathan
    Tillmann, Stephan
    JOURNAL OF TOPOLOGY, 2020, 13 (01) : 308 - 342
  • [5] Hyperbolic volume of representations of fundamental groups of cusped 3-manifolds
    Francaviglia, S
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (09) : 425 - 459
  • [6] Volume and homology of one-cusped hyperbolic 3-manifolds
    Culler, Marc
    Shalen, Peter B.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2008, 8 (01): : 343 - 379
  • [7] A census of cusped hyperbolic 3-manifolds
    Callahan, PJ
    Hildebrand, MV
    Weeks, JR
    MATHEMATICS OF COMPUTATION, 1999, 68 (225) : 321 - 332
  • [8] Cusped Hyperbolic 3-Manifolds of Complexity 10 Having Maximum Volume
    Vesnin, A. Yu.
    Tarkaev, V. V.
    Fominykh, E. A.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 289 : S227 - S239
  • [9] Cusped hyperbolic 3-manifolds of complexity 10 having maximum volume
    A. Yu. Vesnin
    V. V. Tarkaev
    E. A. Fominykh
    Proceedings of the Steklov Institute of Mathematics, 2015, 289 : 227 - 239
  • [10] Geodesic knots in cusped hyperbolic 3-manifolds
    Kuhlmann, Sally M.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2006, 6 : 2151 - 2162