Regularity of solutions to Kolmogorov equation with Gilbarg-Serrin matrix

被引:1
|
作者
Kinzebulatov, D. [1 ]
Semenov, Yu. A. [2 ]
机构
[1] Univ Laval, Dept Mathemat & Satist, 1045 Av Med, Quebec City, PQ G1V 0A6, Canada
[2] Univ Toronto, Dept Math, 40 St George Str, Toronto, ON M5S 2E4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Elliptic operators; Form-bounded vector fields; Regularity of solutions; ELLIPTIC-OPERATORS; L-P; UNBOUNDED DIFFUSION; COEFFICIENTS; SPACES; GENERATION;
D O I
10.1007/s00028-022-00776-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In R-d, d >= 3, consider the divergence and the non-divergence form operators -Delta - del . (a - I) . del + b . del, -Delta - (a - I) . del(2) + b . del, where the second-order perturbations are given by the matrix a - I = c vertical bar x vertical bar(-2)x circle times x, c > -1. The vector field b : R-d -> R-d is form-bounded with form-bound delta > 0. (This includes vector fields with entries in L-d, as well as vector fields having critical-order singularities.) We characterize quantitative dependence on c and delta of the L-q -> W-1,W-qd/(d-2) regularity of solutions of the corresponding elliptic and parabolic equations in L-q, q >= 2 boolean OR (d - 2).
引用
收藏
页数:33
相关论文
共 50 条
  • [1] Regularity of solutions to Kolmogorov equation with Gilbarg–Serrin matrix
    D. Kinzebulatov
    Yu. A. Semënov
    Journal of Evolution Equations, 2022, 22
  • [2] Gilbarg-Serrin equation and Lipschitz regularity
    Maz'ya, Vladimir
    McOwen, Robert
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 312 : 45 - 64
  • [3] On the regularity of solutions in the Pucci-Serrin identity
    Marco Degiovanni
    Alessandro Musesti
    Marco Squassina
    Calculus of Variations and Partial Differential Equations, 2003, 18 : 317 - 334
  • [5] On the regularity of solutions in the Pucci-Serrin identity
    Degiovanni, M
    Musesti, A
    Squassina, M
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2003, 18 (03) : 317 - 334
  • [6] Multidimensional Kolmogorov-Petrovsky test for the boundary regularity and irregularity of solutions to the heat equation
    Abdulla, Ugur G.
    BOUNDARY VALUE PROBLEMS, 2005, 2005 (02) : 181 - 199
  • [7] Multidimensional Kolmogorov-Petrovsky test for the boundary regularity and irregularity of solutions to the heat equation
    Ugur G Abdulla
    Boundary Value Problems, 2005
  • [8] Regularity of Solutions to Kolmogorov Equations with Perturbed Drifts
    Bogachev, Vladimir I.
    Kosov, Egor D.
    Shaposhnikov, Alexander V.
    POTENTIAL ANALYSIS, 2023, 58 (04) : 681 - 702
  • [9] Regularity of Solutions to Kolmogorov Equations with Perturbed Drifts
    Vladimir I. Bogachev
    Egor D. Kosov
    Alexander V. Shaposhnikov
    Potential Analysis, 2023, 58 : 681 - 702
  • [10] Integrable Solutions of the Stationary Kolmogorov Equation
    Bogachev, V. I.
    Kirillov, A. I.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2012, 85 (03) : 309 - 314