A Survey of Validation Strategies for CRISPR-Cas9 Editing

被引:208
|
作者
Sentmanat, Monica F. [2 ]
Peters, Samuel T. [1 ]
Florian, Colin P. [2 ]
Connelly, Jon P. [1 ]
Pruett-Miller, Shondra M. [1 ]
机构
[1] St Jude Childrens Res Hosp, Dept Cell & Mol Biol, Memphis, TN 38105 USA
[2] Washington Univ, Sch Med, Dept Genet, St Louis, MO 63110 USA
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
关键词
MISMATCH CLEAVAGE; BACTERIOPHAGE-T7; MUTATIONS; SPECIFICITY; ENRICHMENT; ENZYME; CELLS;
D O I
10.1038/s41598-018-19441-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The T7 endonuclease 1 (T7E1) mismatch detection assay is a widely used method for evaluating the activity of site-specific nucleases, such as the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system. To determine the accuracy and sensitivity of this assay, we compared the editing estimates derived by the T7E1 assay with that of targeted next-generation sequencing (NGS) in pools of edited mammalian cells. Here, we report that estimates of nuclease activity determined by T7E1 most often do not accurately reflect the activity observed in edited cells. Editing efficiencies of CRISPR-Cas9 complexes with similar activity by T7E1 can prove dramatically different by NGS. Additionally, we compared editing efficiencies predicted by the Tracking of Indels by Decomposition (TIDE) assay and the Indel Detection by Amplicon Analysis (IDAA) assay to that observed by targeted NGS for both cellular pools and single-cell derived clones. We show that targeted NGS, TIDE, and IDAA assays predict similar editing efficiencies for pools of cells but that TIDE and IDAA can miscall alleles in edited clones.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] A Survey of Validation Strategies for CRISPR-Cas9 Editing
    Monica F. Sentmanat
    Samuel T. Peters
    Colin P. Florian
    Jon P. Connelly
    Shondra M. Pruett-Miller
    Scientific Reports, 8
  • [2] Strategies for Efficient Genome Editing Using CRISPR-Cas9
    Farboud, Behnom
    Severson, Aaron F.
    Meyer, Barbara J.
    GENETICS, 2019, 211 (02) : 431 - 457
  • [3] gRNA validation for wheat genome editing with the CRISPR-Cas9 system
    Arndell, Taj
    Sharma, Niharika
    Langridge, Peter
    Baumann, Ute
    Watson-Haigh, Nathan S.
    Whitford, Ryan
    BMC BIOTECHNOLOGY, 2019, 19 (01)
  • [4] gRNA validation for wheat genome editing with the CRISPR-Cas9 system
    Taj Arndell
    Niharika Sharma
    Peter Langridge
    Ute Baumann
    Nathan S. Watson-Haigh
    Ryan Whitford
    BMC Biotechnology, 19
  • [5] Therapeutic gene editing strategies using CRISPR-Cas9 for the β-hemoglobinopathies
    Papizan, James B.
    Porter, Shaina N.
    Sharma, Akshay
    Pruett-Miller, Shondra M.
    JOURNAL OF BIOMEDICAL RESEARCH, 2021, 35 (02): : 115 - 134
  • [6] Therapeutic gene editing strategies using CRISPR-Cas9 for the β-hemoglobinopathies
    James B.Papizan
    Shaina N.Porter
    Akshay Sharma
    Shondra M.Pruett-Miller
    The Journal of Biomedical Research, 2021, 35 (02) : 115 - 134
  • [7] Controlling CRISPR-Cas9 Gene Editing
    Dowdy, Steven F.
    NEW ENGLAND JOURNAL OF MEDICINE, 2019, 381 (03): : 289 - 290
  • [8] Introduction to CRISPR-Cas9 Gene Editing
    Mason, J. M.
    BIRTH DEFECTS RESEARCH, 2020, 112 (11): : 809 - 809
  • [9] CRISPR-Cas9 Gene Editing for Fruit and Vegetable Crops: Strategies and Prospects
    Wan, Lili
    Wang, Zhuanrong
    Tang, Mi
    Hong, Dengfeng
    Sun, Yuhong
    Ren, Jian
    Zhang, Na
    Zeng, Hongxia
    HORTICULTURAE, 2021, 7 (07)
  • [10] The Implications of CRISPR-Cas9 Genome Editing for IR
    Perkons, Nicholas R.
    Sheth, Rahul
    Ackerman, Daniel
    Chen, James
    Saleh, Kamiel
    Hunt, Stephen J.
    Nadolski, Gregory J.
    Shi, Junwei
    Gade, Terence P.
    JOURNAL OF VASCULAR AND INTERVENTIONAL RADIOLOGY, 2018, 29 (09) : 1264 - 1267