Supervised multidimensional scaling for visualization, classification, and bipartite ranking

被引:14
|
作者
Witten, Daniela M. [1 ]
Tibshirani, Robert [1 ,2 ]
机构
[1] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Hlth Res & Policy, Stanford, CA 94305 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Classification; Multidimensional scaling; Unidimensional scaling; Unsupervised learning; Majorization; Ranking; GENERALIZATION BOUNDS;
D O I
10.1016/j.csda.2010.07.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Least squares multidimensional scaling (MDS) is a classical method for representing an n x n dissimilarity matrix D. One seeks a set of configuration points z(1), ... , Z(n) is an element of R-S such that D is well approximated by the Euclidean distances between the configuration points: D-ij approximate to parallel to Z(i) - Z(j)parallel to(2). Suppose that in addition to D. a vector of associated binary class labels y is an element of {1, 2}(n) corresponding to the n observations is available. We propose an extension to MDS that incorporates this outcome vector. Our proposal, supervised multidimensional scaling (SMDS), seeks a set of configuration points z(1,) ... , z(n) is an element of R-S such that D-ij approximate to parallel to Z(i) - Z(j)parallel to(2), and such that z(is) > z(is) for s = 1, ... , S tends to occur when y(i) > y(j). This results in a new way to visualize the observations. In addition, we show that SMDS leads to a method for the classification of test observations, which can also be interpreted as a solution to the bipartite ranking problem. This method is explored in a simulation study, as well as on a prostate cancer gene expression data set and on a handwritten digits data set. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:789 / 801
页数:13
相关论文
共 50 条
  • [1] Anomaly Ranking as Supervised Bipartite Ranking
    Clemencon, Stephan
    Robbiano, Sylvain
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 343 - 351
  • [2] Evolutionary multidimensional scaling for data visualization and classification
    Iswandy, Kuncup
    Koenig, Andreas
    [J]. APPLICATIONS OF SOFT COMPUTING: RECENT TRENDS, 2006, : 177 - +
  • [3] A partially supervised metric multidimensional scaling algorithm for textual data visualization
    Blanco, Angel
    Martin-Merino, Manuel
    [J]. ADVANCES IN INTELLIGENT DATA ANALYSIS VII, PROCEEDINGS, 2007, 4723 : 252 - +
  • [4] Multidimensional scaling with discrimination coefficients for supervised visualization of high-dimensional data
    Berrar, Daniel
    Ohmayer, Georg
    [J]. NEURAL COMPUTING & APPLICATIONS, 2011, 20 (08): : 1211 - 1218
  • [5] Multidimensional scaling with discrimination coefficients for supervised visualization of high-dimensional data
    Daniel Berrar
    Georg Ohmayer
    [J]. Neural Computing and Applications, 2011, 20 : 1211 - 1218
  • [6] Visualization Methodology for Multidimensional Scaling
    Andreas Buja
    Deborah F. Swayne
    [J]. Journal of Classification, 2002, 19 : 7 - 43
  • [7] Visualization methodology for multidimensional scaling
    Buja, A
    Swayne, DF
    [J]. JOURNAL OF CLASSIFICATION, 2002, 19 (01) : 7 - 43
  • [8] Data visualization with multidimensional scaling
    Buja, Andreas
    Swayne, Deborah F.
    Littman, Michael L.
    Dean, Nathaniel
    Hofmann, Heike
    Chen, Lisha
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2008, 17 (02) : 444 - 472
  • [9] Interactive visualization system with multidimensional scaling
    Song, M
    Lin, X
    [J]. ASIST 2002: PROCEEDINGS OF THE 65TH ASIST ANNUAL MEETING, VOL 39, 2002, 2002, 39 : 562 - 563
  • [10] Multidimensional scaling visualization of earthquake phenomena
    António M. Lopes
    J. A. Tenreiro Machado
    C. M. A. Pinto
    A. M. S. F. Galhano
    [J]. Journal of Seismology, 2014, 18 : 163 - 179