Airport Detection Using End-to-End Convolutional Neural Network with Hard Example Mining

被引:33
|
作者
Cai, Bowen [1 ,2 ]
Jiang, Zhiguo [1 ,2 ]
Zhang, Haopeng [1 ,2 ]
Zhao, Danpei [1 ,2 ]
Yao, Yuan [1 ,2 ]
机构
[1] Beihang Univ, Sch Astronaut, Image Proc Ctr, Beijing 100191, Peoples R China
[2] Beihang Univ, Beijing Key Lab Digital Media, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
airport detection; hard example mining; convolutional neural network; region proposal network; REMOTE-SENSING IMAGES; SALIENCY;
D O I
10.3390/rs9111198
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Deep convolutional neural network (CNN) achieves outstanding performance in the field of target detection. As one of the most typical targets in remote sensing images (RSIs), airport has attracted increasing attention in recent years. However, the essential challenge for using deep CNN to detect airport is the great imbalance between the number of airports and background examples in large-scale RSIs, which may lead to over-fitting. In this paper, we develop a hard example mining and weight-balanced strategy to construct a novel end-to-end convolutional neural network for airport detection. The initial motivation of the proposed method is that backgrounds contain an overwhelming number of easy examples and a few hard examples. Therefore, we design a hard example mining layer to automatically select hard examples by their losses, and implement a new weight-balanced loss function to optimize CNN. Meanwhile, the cascade design of proposal extraction and object detection in our network releases the constraint on input image size and reduces spurious false positives. Compared with geometric characteristics and low-level manually designed features, the hard example mining based network could extract high-level features, which is more robust for airport detection in complex environment. The proposed method is validated on a multi-scale dataset with complex background collected from Google Earth. The experimental results demonstrate that our proposed method is robust, and superior to the state-of-the-art airport detection models.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] End-to-End Exposure Fusion Using Convolutional Neural Network
    Wang, Jinhua
    Wang, Weiqiang
    Xu, Guangmei
    Liu, Hongzhe
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2018, E101D (02): : 560 - 563
  • [2] Remote Sensing Airport Detection Based on End-to-End Deep Transferable Convolutional Neural Networks
    Li, Shuai
    Xu, Yuelei
    Zhu, Mingming
    Ma, Shiping
    Tang, Hong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (10) : 1640 - 1644
  • [3] Effective Complex Airport Object Detection in Remote Sensing Images Based on Improved End-to-End Convolutional Neural Network
    Han, Yongsai
    Ma, Shiping
    Xu, Yuelei
    He, Linyuan
    Li, Shuai
    Zhu, Mingming
    IEEE ACCESS, 2020, 8 (08): : 172652 - 172663
  • [4] End-to-End PSK Signals Demodulation Using Convolutional Neural Network
    Chen, Wen-Jie
    Wang, Jiao
    Li, Jian-Qing
    IEEE ACCESS, 2022, 10 : 58302 - 58310
  • [5] Image reflection removal using end-to-end convolutional neural network
    Li, Jinjiang
    Li, Guihui
    Fan, Hui
    IET IMAGE PROCESSING, 2020, 14 (06) : 1047 - 1058
  • [6] End-to-End Musical Key Estimation Using a Convolutional Neural Network
    Korzeniowski, Filip
    Widmer, Gerhard
    2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 966 - 970
  • [7] End-to-End Multispectral Image Compression Using Convolutional Neural Network
    Kong Fanqiang
    Zhou Yongbo
    Shen Qiu
    Wen Keyao
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2019, 46 (10):
  • [8] End-to-end convolutional neural network design for automatic detection of influenza virus
    Lee, Junghwan
    Eom, Heesang
    Hariyani, Yuli Sun
    Kim, Cheonjung
    Yoo, Yongkyoung
    Lee, Jeonghoon
    Park, Cheolsoo
    Lee, Jeonghoon (jhlee0804@gmail.com), 1600, Institute of Electronics Engineers of Korea (10): : 31 - 36
  • [9] Fast Aircraft Detection Using End-to-End Fully Convolutional Network
    Xu, Ting-Bing
    Cheng, Guang-Liang
    Yang, Jie
    Liu, Cheng-Lin
    2016 IEEE INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2016, : 139 - 143
  • [10] Neural Network Based End-to-End Query by Example Spoken Term Detection
    Ram, Dhananjay
    Miculicich, Lesly
    Bourlard, Herve
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2020, 28 (28) : 1416 - 1427