Homogenization of solutions of initial boundary value problems for parabolic systems

被引:0
|
作者
Meshkova, Yu. M. [1 ]
Suslina, T. A. [2 ]
机构
[1] St Petersburg State Univ, Chebyshev Lab, St Petersburg 199034, Russia
[2] St Petersburg State Univ, Dept Phys, St Petersburg 199034, Russia
关键词
homogenization of periodic differential operators; parabolic systems; initial boundary value problems; effective operator; corrector; operator error estimates; PERIODIC COEFFICIENTS; CAUCHY-PROBLEM; DIRICHLET PROBLEM; ELLIPTIC-SYSTEMS;
D O I
10.1007/s10688-015-0087-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let O subset of R-d be a bounded C-1,C-1 domain. In L-2(O; C-n) we consider strongly elliptic operators A(D,epsilon) and A(N,epsilon) given by the differential expression b(D)*g(x/epsilon)b(D), epsilon > 0, with Dirichlet and Neumann boundary conditions, respectively. Here g(x) is a bounded positive definite matrix-valued function assumed to be periodic with respect to some lattice and b(D) is a first-order differential operator. We find approximations of the operators exp(-A(D,epsilon)t) and exp(-A(N,epsilon)t) for fixed t > 0 and small epsilon in the L-2 -> L-2 and L-2 -> H-1 operator norms with error estimates depending on epsilon and t. The results are applied to homogenize the solutions of initial boundary value problems for parabolic systems.
引用
收藏
页码:72 / 76
页数:5
相关论文
共 50 条