Estimation of the conditional distribution in regression with censored data: a comparative study

被引:0
|
作者
Van Keilegom, I
Akritas, MG
Veraverbeke, N
机构
[1] Limburgs Univ Ctr, Dept Wiskunde, B-3590 Diepenbeek, Belgium
[2] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
关键词
conditional distribution; heteroscedasticity; nonparametric regression; stanford heart transplant data; right censoring;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In nonparametric regression with censored data, the conditional distribution of the response given the covariate is usually estimated by the Beran (Technical Report, University of California, Berkeley, 1981) estimator. This estimator, however, is inconsistent in the right tail of the distribution when heavy censoring is present. In an attempt to solve this inconsistency problem of the Beran estimator, Van Keilegom and Akritas (Ann. Statist. (1999)) developed an alternative estimator for heteroscedastic regression models (see (1.1) below for the definition of the model), which behaves well in the right tail even under heavy censoring. In this paper, the finite sample performance of the estimator introduced by Van Keilegom and Akritas (Ann. Statist. (1999)) and the Beran (Technical Report, University of California, Berkeley, 1981) estimator is compared by means of a simulation study. The simulations show that both the bias and the variance of the former estimator are smaller than that of the latter one. Also, these estimators are used to analyze the Stanford heart transplant data. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:487 / 500
页数:14
相关论文
共 50 条
  • [1] Estimation of the inverse Weibull distribution based on progressively censored data: Comparative study
    Musleh, Rola M.
    Helu, Amal
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2014, 131 : 216 - 227
  • [2] Estimation of a censored regression panel data model using conditional moment restrictions efficiently
    Charlier, E
    Melenberg, B
    van Soest, A
    [J]. JOURNAL OF ECONOMETRICS, 2000, 95 (01) : 25 - 56
  • [3] On Estimation of Conditional Distribution Function under Dependent Random Right Censored Data
    Abdushukurov, Abdurahim A.
    Muradov, Rustamjon S.
    [J]. JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2014, 7 (04): : 409 - 416
  • [4] Inverse Regression Estimation for Censored Data
    Nadkarni, Nivedita V.
    Zhao, Yingqi
    Kosorok, Michael R.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (493) : 178 - 190
  • [5] Conditional Distribution Function Estimation Using Neural Networks for Censored and Uncensored Data
    Hu, Bingqing
    Nan, Bin
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [6] Nonparametric Estimation of the Conditional Distribution Function For Surrogate Data by the Regression Model
    Metmous, Imane
    Attouch, Mohammed Kadi
    Mechab, Boubaker
    Merouan, Torkia
    [J]. APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2021, 16 (01): : 55 - 74
  • [7] Nonparametric robust regression estimation for censored data
    Lemdani, Mohamed
    Said, Elias Ould
    [J]. STATISTICAL PAPERS, 2017, 58 (02) : 505 - 525
  • [8] Location estimation in nonparametric regression with censored data
    Heuchenne, Cedric
    Van Keilegom, Ingrid
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2007, 98 (08) : 1558 - 1582
  • [9] Nonparametric robust regression estimation for censored data
    Mohamed Lemdani
    Elias Ould Saïd
    [J]. Statistical Papers, 2017, 58 : 505 - 525
  • [10] Conditional Quantile Estimation with Truncated, Censored and Dependent Data
    Liang, Hanying
    Li, Deli
    Miao, Tianxuan
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2015, 36 (06) : 969 - 990