Accessible subcategories of modules and pathological objects

被引:7
|
作者
Guil Asensio, Pedro A. [1 ]
Izurdiaga, Manuel C. [2 ]
Torrecillas, Blas [2 ]
机构
[1] Univ Murcia, Dept Matemat, E-30100 Murcia, Spain
[2] Univ Almeria, Dept Algebra & Anal Matemat, Almeria 04071, Spain
关键词
D O I
10.1515/FORUM.2010.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let lambda be an infinite regular cardinal. It is proved, under the assumption of the Generalized Continuum Hypothesis, that any lambda-accessible and lambda-accessibly embedded subcategory K of a category of modules closed under direct sums gives rise to non-trivial kappa-separable modules, for arbitrarily large regular cardinals kappa >= lambda, when some modules of K are not direct sum of lambda-presentable modules (namely, those modules which are totally ordered.-directed colimits of lambda-presentable modules). In particular, it is shown that any ring R that is not left pure-semisimple has non-trivial lambda-separable left modules for arbitrarily large regular cardinals lambda. These results extend previous constructions by Corner, Griffith, Hill, Eklof, Shelah and Huisgen-Zimmermann. We point up that kappa-separable modules satisfy certain generalized Mittag-Leffler conditions.
引用
收藏
页码:485 / 507
页数:23
相关论文
共 50 条