Estimation capabilities of biodiesel production from algae oil blend using adaptive neuro-fuzzy inference system (ANFIS)

被引:16
|
作者
Kumar, Sunil [1 ]
机构
[1] FET GKV, Dept Mech Engn, Haridwar 249404, India
关键词
Adaptive neuro-fuzzy inference system; ANFIS; biodiesel; modeling; prediction; JATROPHA; PARAMETERS; NETWORK;
D O I
10.1080/15567036.2019.1602203
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Biodiesel produced from different raw materials is the most effective way to solve problems related to the fuel crisis and environmental problems. In the present study, the methodology of the adaptive neuro-fuzzy inference system (ANFIS) for the modeling and estimation of a process applied to the production of biodiesel from the blend of algae oil. The Gaussian membership function was applied and studied. The results of ANFIS are compared with the actual results obtained through the experiment using the mean root-mean-square error (RMSE) and the determination coefficient (R-square). The results show an improvement in the prediction, accuracy, and capacity of the ANFIS technique for estimation. The statistical characteristics of RMSE were 0.2179 and R-squared was 0.9998 obtained in training. As the ANFIS offers a good estimation, the modeling quality can be applied to the biodiesel production process as well.
引用
收藏
页码:909 / 917
页数:9
相关论文
共 50 条
  • [1] An appraisal of the competence of mathematical fuzzy logic approach via adaptive neuro-fuzzy inference system (ANFIS) in biodiesel production from algae oil
    Sharma, Divyangana
    Goel, Vivek
    Kumar, Sunil
    ENGINEERING RESEARCH EXPRESS, 2025, 7 (01):
  • [2] ESTIMATION OF SUBSURFACE STRATA OF EARTH USING ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)
    Srinivas, Y.
    Raj, A. Stanley
    Oliver, D. Hudson
    Muthuraj, D.
    Chandrasekar, N.
    ACTA GEODAETICA ET GEOPHYSICA HUNGARICA, 2012, 47 (01): : 78 - 89
  • [3] Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS)
    Mohandes, M.
    Rehman, S.
    Rahman, S. M.
    APPLIED ENERGY, 2011, 88 (11) : 4024 - 4032
  • [4] Estimation of subsurface strata of earth using Adaptive Neuro-Fuzzy Inference System (ANFIS)
    Y. Srinivas
    A. Stanley Raj
    D. Hudson Oliver
    D. Muthuraj
    N. Chandrasekar
    Acta Geodaetica et Geophysica Hungarica, 2012, 47 : 78 - 89
  • [5] Online critical clearing time estimation using an adaptive neuro-fuzzy inference system (ANFIS)
    Phootrakornchai, Witsawa
    Jiriwibhakorn, Somchat
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2015, 73 : 170 - 181
  • [6] LANDSLIDE SUSCEPTIBILITY MAPPING BY USING AN ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)
    Choi, J.
    Lee, Y. K.
    Lee, M. J.
    Kim, K.
    Park, Y.
    Kim, S.
    Goo, S.
    Cho, M.
    Sim, J.
    Won, J. S.
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 1989 - 1992
  • [7] Illuminant Estimation Using Adaptive Neuro-Fuzzy Inference System
    Luo, Yunhui
    Wang, Xingguang
    Wang, Qing
    Chen, Yehong
    APPLIED SCIENCES-BASEL, 2021, 11 (21):
  • [8] Estimation of Housing Demand with Adaptive Neuro-Fuzzy Inference Systems (ANFIS)
    Aydin, Olgun
    Hayat, Elvan Akturk
    IMPACT OF GLOBALIZATION ON INTERNATIONAL FINANCE AND ACCOUNTING, 2018, : 449 - 455
  • [9] Battery state-of-charge (SOC) estimation using adaptive neuro-fuzzy inference system (ANFIS)
    Cai, CH
    Du, D
    Liu, ZY
    PROCEEDINGS OF THE 12TH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1 AND 2, 2003, : 1068 - 1073
  • [10] Optimization of Photosynthetic Rate Parameters using Adaptive Neuro-Fuzzy Inference System (ANFIS)
    Valenzuela, Ira C.
    Baldovino, Renann G.
    Bandala, Argel A.
    Dadios, Elmer P.
    2017 INTERNATIONAL CONFERENCE ON COMPUTER AND APPLICATIONS (ICCA), 2017, : 129 - 134