Time-frequency partitions and characterizations of modulation spaces with localization operators

被引:13
|
作者
Doerfler, Monika [1 ]
Groechenig, Karlheinz [1 ]
机构
[1] Univ Vienna, Inst Math, A-1090 Vienna, Austria
关键词
Phase-space localization; Short-time Fourier transform; Modulation space; Localization operator; Gabor frame; INTEGRABLE GROUP-REPRESENTATIONS; ATOMIC DECOMPOSITIONS; GABOR FRAMES; DISTRIBUTIONS; CONVOLUTION; CALCULUS;
D O I
10.1016/j.jfa.2010.12.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study families of time-frequency localization operators and derive a new characterization of modulation spaces. This characterization relates the size of the localization operators to the global time-frequency distribution. As a by-product, we obtain a new proof for the existence of multi-window Gabor frames and extend the structure theory of Gabor frames. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1903 / 1924
页数:22
相关论文
共 50 条
  • [1] Time-frequency analysis of localization operators
    Cordero, E
    Gröchenig, K
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 205 (01) : 107 - 131
  • [2] Excursus on modulation spaces via metaplectic operators and related time-frequency representations
    Cordero, Elena
    Giacchi, Gianluca
    [J]. SAMPLING THEORY SIGNAL PROCESSING AND DATA ANALYSIS, 2024, 22 (01):
  • [3] Time-frequency analysis and coorbit spaces of operators
    Doerfler, Monika
    Luef, Franz
    McNulty, Henry
    Skrettingland, Eirik
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 534 (02)
  • [4] Time-Frequency Localization Operators and a Berezin Transform
    Bayer, Dominik
    Groechenig, Karlheinz
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2015, 82 (01) : 95 - 117
  • [5] THE NORM OF TIME-FREQUENCY AND WAVELET LOCALIZATION OPERATORS
    Nicola, Fabio
    Tilli, Paolo
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (10) : 7353 - 7375
  • [6] Localization operators via time-frequency analysis
    Cordero, E
    Tabacco, A
    [J]. ADVANCES IN PSEUDO-DIFFERENTIAL OPERATORS, 2004, 155 : 131 - 147
  • [7] OFDM, Laurent operators, and time-frequency localization
    Strohmer, T
    [J]. WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING VIII PTS 1 AND 2, 2000, 4119 : 48 - 57
  • [8] Uniform eigenvalue estimates for time-frequency localization operators
    De Mari, F
    Feichtinger, HG
    Nowak, K
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 65 : 720 - 732
  • [10] A new optimal estimate for the norm of time-frequency localization operators
    Riccardi, Federico
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (06)