Two new methods to obtain super vertex-magic total labelings of graphs

被引:16
|
作者
Gomez, J. [1 ]
机构
[1] Univ Politecn Cataluna, E-08028 Barcelona, Spain
关键词
graph; magic graph; super vertex-magic total labeling;
D O I
10.1016/j.disc.2007.06.040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V, E) be a finite non-empty graph, where V and E are the sets of vertices and edges of G, respectively, and vertical bar V vertical bar = n and vertical bar E vertical bar = e. A vertex-magic total labeling (VMTL) is a bijection lambda from V U E to the consecutive integers 1, 2, ..., n + e with the property that for every v is an element of V, lambda(v) + Sigma(w is an element of N(v)) lambda(v, w) = h, for some constant h. Such a labeling is super if lambda(V) = {1, 2, ..., n}. In this paper, two new methods to obtain super VMTLs of graphs are put forward. The first, from a graph G with some characteristics, provides a super VMTL to the graph kG graph composed by the disjoint unions of k copies of G, for a large number of values of k. The second, from a graph G(0) which admits a super VMTL; for instance, the graph kG, provides many super VMTLs for the graphs obtained from G(0) by means of the addition to it of various sets of edges. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:3361 / 3372
页数:12
相关论文
共 50 条
  • [1] Vertex-magic total labelings of graphs
    MacDougall, JA
    Miller, M
    Slamin
    Wallis, WD
    UTILITAS MATHEMATICA, 2002, 61 : 3 - 21
  • [2] Vertex-magic total labelings of regular graphs
    Gray, Ian D.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (01) : 170 - 177
  • [3] Vertex-magic total labelings of complete bipartite graphs
    Gray, ID
    MacDougall, JA
    Simpson, RJ
    Wallis, WD
    ARS COMBINATORIA, 2003, 69 : 117 - 127
  • [4] Vertex-magic total labelings of wheels and related graphs
    MacDougall, JA
    Miller, M
    Wallis, WD
    UTILITAS MATHEMATICA, 2002, 62 : 175 - 183
  • [5] Vertex-magic total labelings of even complete graphs
    Armstrong, Addie
    McQuillan, Dan
    DISCRETE MATHEMATICS, 2011, 311 (8-9) : 676 - 683
  • [6] Vertex-magic total labelings of generalized Petersen graphs
    Baca, M
    Miller, M
    Slamin
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2002, 79 (12) : 1259 - 1263
  • [7] Vertex-magic labelings of regular graphs II
    Gray, I. D.
    MacDougall, J. A.
    DISCRETE MATHEMATICS, 2009, 309 (20) : 5986 - 5999
  • [8] SUPER VERTEX-MAGIC TOTAL LABELINGS OF FLOWER SNARK AND RELATED GRAPH
    Xi Yue
    Yang Yuansheng
    Wang Liping
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2009, 40 (02): : 123 - 129
  • [9] Super vertex-magic total labelings of W3,n
    Xi Yue
    Yang Yuansheng
    Mominul
    Wang Liping
    ARS COMBINATORIA, 2008, 86 : 121 - 128
  • [10] Vertex-magic labelings: mutations
    Gray, I. D.
    MacDougall, J. A.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2009, 45 : 189 - 206