Mathematical Analysis of a Non-Local Mixed ODE-PDE Model for Tumor Invasion and Chemotherapy

被引:1
|
作者
de Araujo, Anderson L. A. [1 ]
Fassoni, Artur C. [2 ]
Salvino, Luis F. [1 ]
机构
[1] Univ Fed Vicosa, Dept Matemat, Vicosa, MG, Brazil
[2] Univ Fed Itajuba, Inst Matemat & Comp, Itajuba, MG, Brazil
关键词
Nonlinear system; Existence of solutions; Tumor growth; Acid-mediated tumor invasion; Chemotherapy;
D O I
10.1007/s10440-020-00340-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new mathematical model for acid-mediated tumor invasion encompassing chemotherapy treatment. The model consists of a mixed ODE-PDE system with four differential equations, describing the spatio-temporal dynamics of normal cells, tumor cells, lactic acid concentration, and chemotherapy drug concentration. The model assumes non-local diffusion coefficients for tumor cells. We provide an analysis on the existence and uniqueness of model solutions. We also provide numerical simulations illustrating the model behavior, showing the invasion and the treatment phases, and comparing the model solutions with the case of constant diffusion coefficients instead of the non-local terms.
引用
收藏
页码:415 / 442
页数:28
相关论文
共 50 条
  • [1] Mathematical Analysis of a Non-Local Mixed ODE-PDE Model for Tumor Invasion and Chemotherapy
    Anderson L. A. de Araujo
    Artur C. Fassoni
    Luís F. Salvino
    Acta Applicandae Mathematicae, 2020, 170 : 415 - 442
  • [2] A mixed ODE-PDE model for vehicular traffic
    Colombo, Rinaldo M.
    Marcellini, Francesca
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (07) : 1292 - 1302
  • [3] Analysis and control of a non-local PDE traffic flow model
    Karafyllis, Iasson
    Theodosis, Dionysios
    Papageorgiou, Markos
    INTERNATIONAL JOURNAL OF CONTROL, 2022, 95 (03) : 660 - 678
  • [4] Global stability of a PDE-ODE model for acid-mediated tumor invasion
    Li, Fang
    Yao, Zheng-an
    Yu, Ruijia
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 371 : 353 - 395
  • [5] Using Nudging for the Control of a Non-Local PDE Traffic Flow Model
    Karafyllis, Iasson
    Theodosis, Dionysis
    Papageorgiou, Markos
    2020 IEEE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2020,
  • [6] Mathematical modelling of cancer cell invasion of tissue: Local and non-local models and the effect of adhesion
    Gerisch, A.
    Chaplain, M. A. J.
    JOURNAL OF THEORETICAL BIOLOGY, 2008, 250 (04) : 684 - 704
  • [7] NONLINEAR STABILITY OF A HETEROGENEOUS STATE IN A PDE-ODE MODEL FOR ACID-MEDIATED TUMOR INVASION
    Tao, Youshan
    Tello, J. Ignacio
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2016, 13 (01) : 193 - 207
  • [8] Non-local effects in an integro-PDE model from population genetics
    Li, F.
    Nakashima, K.
    Ni, W. -M.
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2017, 28 (01) : 1 - 41
  • [9] The global attractor of a non-local PDE model with delay for population dynamics in ℝn
    Xiang Li
    Zhi Xiang Li
    Acta Mathematica Sinica, English Series, 2011, 27
  • [10] The asymptotic behavior of the strong solutions for a non-autonomous non-local PDE model with delay
    Li, Xiang
    Li, Zhixiang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (9-10) : 3681 - 3694