What kind of initial errors cause the severest prediction uncertainty of El Nino in Zebiak-Cane model
被引:9
|
作者:
Xu Hui
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Atmospher Phys, State Lab Numer Modeling Atmospher Sci & Geophys, Beijing 100029, Peoples R ChinaChinese Acad Sci, Inst Atmospher Phys, State Lab Numer Modeling Atmospher Sci & Geophys, Beijing 100029, Peoples R China
Xu Hui
[1
]
Duan Wansuo
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Atmospher Phys, State Lab Numer Modeling Atmospher Sci & Geophys, Beijing 100029, Peoples R ChinaChinese Acad Sci, Inst Atmospher Phys, State Lab Numer Modeling Atmospher Sci & Geophys, Beijing 100029, Peoples R China
Duan Wansuo
[1
]
机构:
[1] Chinese Acad Sci, Inst Atmospher Phys, State Lab Numer Modeling Atmospher Sci & Geophys, Beijing 100029, Peoples R China
With the Zebiak-Cane (ZC) model, the initial error that has the largest effect on ENSO prediction is explored by conditional nonlinear optimal perturbation (CNOP). The results demonstrate that CNOP-type errors cause the largest prediction error of ENSO in the ZC model. By analyzing the behavior of CNOP-type errors, we find that for the normal states and the relatively weak El Nino events in the ZC model, the predictions tend to yield false alarms due to the uncertainties caused by CNOP. For the relatively strong El Nino events, the ZC model largely underestimates their intensities. Also, our results suggest that the error growth of El Nino in the ZC model depends on the phases of both the annual cycle and ENSO. The condition during northern spring and summer is most favorable for the error growth. The ENSO prediction bestriding these two seasons may be the most difficult. A linear singular vector (LSV) approach is also used to estimate the error growth of ENSO, but it underestimates the prediction uncertainties of ENSO in the ZC model. This result indicates that the different initial errors cause different amplitudes of prediction errors though they have same magnitudes. CNOP yields the severest prediction uncertainty. That is to say, the prediction skill of ENSO is closely related to the types of initial error. This finding illustrates a theoretical basis of data assimilation. It is expected that a data assimilation method can filter the initial errors related to CNOP and improve the ENSO forecast skill.
机构:Chinese Academy of Sciences,State Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics
Hui Xu
Wansuo Duan
论文数: 0引用数: 0
h-index: 0
机构:Chinese Academy of Sciences,State Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics
Wansuo Duan
Advances in Atmospheric Sciences,
2008,
25
: 577
-
584
机构:
Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing 100029, Peoples R ChinaChinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing 100029, Peoples R China
Mu, Mu
Xu, Hui
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing 100029, Peoples R ChinaChinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing 100029, Peoples R China
Xu, Hui
Duan, Wansuo
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing 100029, Peoples R ChinaChinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing 100029, Peoples R China
机构:
Chinese Acad Sci, State Key Lab Numer Modeling Atmospher Sci & Geop, Inst Atmospher Phys, Beijing 100029, Peoples R ChinaChinese Acad Sci, State Key Lab Numer Modeling Atmospher Sci & Geop, Inst Atmospher Phys, Beijing 100029, Peoples R China
机构:
State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences
University of Chinese Academy of SciencesState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences
ZHAO Peng
DUAN Wan-Suo
论文数: 0引用数: 0
h-index: 0
机构:
State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of SciencesState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences
机构:
Chinese Acad Sci, State Key Lab Numer Modeling Atmospher Sci & Geop, Inst Atmospher Phys, Beijing 100029, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, State Key Lab Numer Modeling Atmospher Sci & Geop, Inst Atmospher Phys, Beijing 100029, Peoples R China
Zhao Peng
Duan Wan-Suo
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, State Key Lab Numer Modeling Atmospher Sci & Geop, Inst Atmospher Phys, Beijing 100029, Peoples R ChinaChinese Acad Sci, State Key Lab Numer Modeling Atmospher Sci & Geop, Inst Atmospher Phys, Beijing 100029, Peoples R China
机构:
Chinese Acad Sci, Inst Atmospher Phys, LASG, Beijing 100029, Peoples R China
Chinese Acad Sci, Grad Univ, Beijing 100029, Peoples R China
Chinese Acad Sci, Inst Oceanol, Key Lab Ocean Circulat & Waves, Qingdao, Peoples R ChinaChinese Acad Sci, Inst Atmospher Phys, LASG, Beijing 100029, Peoples R China
Yu, Yanshan
Duan, Wansuo
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Atmospher Phys, LASG, Beijing 100029, Peoples R ChinaChinese Acad Sci, Inst Atmospher Phys, LASG, Beijing 100029, Peoples R China
Duan, Wansuo
Xu, Hui
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Atmospher Phys, LASG, Beijing 100029, Peoples R ChinaChinese Acad Sci, Inst Atmospher Phys, LASG, Beijing 100029, Peoples R China
Xu, Hui
Mu, Mu
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Atmospher Phys, LASG, Beijing 100029, Peoples R China
Chinese Acad Sci, Inst Oceanol, Key Lab Ocean Circulat & Waves, Qingdao, Peoples R ChinaChinese Acad Sci, Inst Atmospher Phys, LASG, Beijing 100029, Peoples R China