Combination of Unsupervised Keyphrase Extraction Algorithms

被引:4
|
作者
Zhu, Zede [1 ]
Li, Miao [1 ]
Chen, Lei [1 ]
Yang, Zhenxin [1 ]
Chen, Sheng [1 ]
机构
[1] Chinese Acad Sci, Inst Intelligent Machines, Hefei, Peoples R China
基金
中国国家自然科学基金;
关键词
information extraction; keyphrase extraction; unsupervised learning; combination method;
D O I
10.1109/IALP.2013.14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Keyphrase extraction plays a significant role in many language processing tasks such as text summarization, text categorization and information retrieval. However, none study combines several approaches to improve the performance of keyphrase extraction. This paper first implements three representative unsupervised algorithms TfIdf, TextRank and ExpandRank, and then proposes a generalized framework using serial, parallel and voting methods on combining these algorithms for comprehensive analysis of keyphrase extraction. Experimental results, carried out on an evaluation dataset including 1040 abstracts from Chinese thesis, demonstrate the remarkable performance of some combination approaches.
引用
收藏
页码:33 / 36
页数:4
相关论文
共 50 条
  • [1] TripleRank: An unsupervised keyphrase extraction algorithm
    Li, Tuohang
    Hu, Liang
    Li, Hongtu
    Sun, Chengyu
    Li, Shuai
    Chi, Ling
    [J]. KNOWLEDGE-BASED SYSTEMS, 2021, 219 (219)
  • [2] Unsupervised keyphrase extraction for search ontologies
    Gulla, Jon Atle
    Borch, Hans Olaf
    Ingvaldsen, Jon Espen
    [J]. NATURAL LANGUAGE PROCESSING AND INFORMATION SYSTEMS, PROCEEDINGS, 2006, 3999 : 25 - 36
  • [3] Unsupervised Keyphrase Extraction for Web Pages
    Haarman, Tim
    Zijlema, Bastiaan
    Wiering, Marco
    [J]. MULTIMODAL TECHNOLOGIES AND INTERACTION, 2019, 3 (03)
  • [4] Learning algorithms for keyphrase extraction
    Turney P.D.
    [J]. Information Retrieval, 2000, 2 (4): : 303 - 336
  • [5] PromptRank: Unsupervised Keyphrase Extraction Using Prompt
    Kong, Aobo
    Zhao, Shiwan
    Chen, Hao
    Li, Qicheng
    Qin, Yong
    Sun, Ruiqi
    Bai, Xiaoyan
    [J]. PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023): LONG PAPERS, VOL 1, 2023, : 9788 - 9801
  • [6] NamedKeys: Unsupervised Keyphrase Extraction for Biomedical Documents
    Gero, Zelalem
    Ho, Joyce C.
    [J]. ACM-BCB'19: PROCEEDINGS OF THE 10TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND HEALTH INFORMATICS, 2019, : 328 - 337
  • [7] How Preprocessing Affects Unsupervised Keyphrase Extraction
    Wang, Rui
    Liu, Wei
    McDonald, Chris
    [J]. COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, CICLING 2014, PT I, 2014, 8403 : 163 - 176
  • [8] A New Scheme for Scoring Phrases in Unsupervised Keyphrase Extraction
    Florescu, Corina
    Caragea, Cornelia
    [J]. ADVANCES IN INFORMATION RETRIEVAL, ECIR 2017, 2017, 10193 : 477 - 483
  • [9] Towards unsupervised keyphrase extraction via an autoregressive approach
    Li, Tuohang
    Hu, Liang
    Li, Hongtu
    Sun, Chengyu
    Li, Shuai
    Chi, Ling
    [J]. KNOWLEDGE-BASED SYSTEMS, 2023, 274
  • [10] Unsupervised Keyphrase Extraction via Interpretable Neural Networks
    Joshi, Rishabh
    Balachandran, Vidhisha
    Saldanha, Emily
    Glenski, Maria
    Volkova, Svitlana
    Tsvetkov, Yulia
    [J]. 17TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EACL 2023, 2023, : 1107 - 1119