New approaches to processing GIS Data using Artificial Neural Networks models

被引:0
|
作者
Mihai, Dana [1 ]
机构
[1] Univ Craiova, Fac Automat Comp & Elect, Dept Comp & Informat Technol, 107 Bvd Decebal, Craiova 200440, Romania
关键词
Spatial data mining; Classification; GIS; Artificial Neural Networks; Weka;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Spatial data mining is a special type of data mining. The main difference between data mining and spatial data mining is that in spatial data mining tasks we use not only non-spatial attributes but also spatial attributes. Spatial data mining techniques have strong relationship with GIS (Geographical Information System) and are widely used in GIS for inferring association among spatial attributes, clustering and classifying information with respect to spatial attributes. In this paper we use the statistical package Weka on two models, which consist of two parcels plans from the Olt area of Romania. In our experimentation, we compare the results of the vector models depending on the values of the training datasets. Using these models with GIS data from the domain of Cadaster we analyze the performance of the Artificial Neural Networks in context of spatial data mining.
引用
收藏
页码:358 / 373
页数:16
相关论文
共 50 条
  • [1] New Approaches for the Determination of Specific Values for Process Models in Machining Using Artificial Neural Networks
    Arnold, F.
    Haenel, A.
    Nestler, A.
    Brosius, A.
    [J]. 27TH INTERNATIONAL CONFERENCE ON FLEXIBLE AUTOMATION AND INTELLIGENT MANUFACTURING, FAIM2017, 2017, 11 : 1463 - 1470
  • [2] Editorial: Artificial Neural Networks as Models of Neural Information Processing
    van Gerven, Marcel
    Bohte, Sander
    [J]. FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2017, 11
  • [3] Alternative Approaches for Growth Models: Artificial Neural Networks
    Benzer, Recep
    Benzer, Semra
    [J]. 2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [4] A New Data Mining Scheme Using Artificial Neural Networks
    Kamruzzaman, S. M.
    Sarkar, A. M. Jehad
    [J]. SENSORS, 2011, 11 (05) : 4622 - 4647
  • [5] Modelling deforestation using GIS and artificial neural networks
    Mas, JF
    Puig, H
    Palacio, JL
    Sosa-López, A
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2004, 19 (05) : 461 - 471
  • [6] DATA PROCESSING USING ARTIFICIAL NEURAL NETWORKS TO IMPROVE THE SIMULATION OF LUNG MOTION
    Laurent, R.
    Salomon, M.
    Henriet, J.
    Sauget, M.
    Gschwind, R.
    Makovicka, L.
    [J]. BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS, 2012, 24 (06): : 563 - 571
  • [7] Microwave moisture sensor with nonlinear data processing using artificial neural networks
    Daschner, F
    Knöchel, R
    [J]. SICON/01: ISA/IEEE SENSORS FOR INDUSTRY CONFERENCE, PROCEEDINGS, 2001, : 246 - 250
  • [8] Artificial neural networks in incomplete data sets processing
    Tkacz, M
    [J]. Intelligent Information Processing and Web Mining, Proceedings, 2005, : 577 - 583
  • [9] Hybrid Artificial Neural Networks: Models, Algorithms and Data
    Gutierrez, P. A.
    Hervas-Martinez, C.
    [J]. ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2011, PT II, 2011, 6692 : 177 - 184
  • [10] Fault Location on Radial Distribution Systems Using Wavelets and Artificial Neural Networks with a New Data Processing Feature
    Junior, Almir Laranjeira N. E. R., I
    Moreira, Fernando Augusto
    Souza, Benemar Alencar de
    [J]. ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2024, 24 (02) : 3 - 10