Folding of a DNA hairpin loop structure in explicit solvent using replica-exchange molecular dynamics Simulations

被引:44
|
作者
Kannan, Srinivasaraghavan [1 ]
Zacharias, Martin [1 ]
机构
[1] Jacobs Univ Bremen, Sch Sci & Engn, D-28759 Bremen, Germany
关键词
D O I
10.1529/biophysj.107.108019
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Hairpin loop structures are common motifs in folded nucleic acids. The 59-GCGCAGC sequence in DNA forms a characteristic and stable trinucleotide hairpin loop flanked by a two basepair stem helix. To better understand the structure formation of this hairpin loop motif in atomic detail, we employed replica-exchange molecular dynamics (RexMD) simulations starting from a single-stranded DNA conformation. In two independent 36 ns RexMD simulations, conformations in very close agreement with the experimental hairpin structure were sampled as dominant conformations ( lowest free energy state) during the final phase of the RexMDs (; similar to 35% at the lowest temperature replica). Simultaneous compaction and accumulation of folded structures were observed. Comparison of the GCA trinucleotides from early stages of the simulations with the folded topology indicated a variety of central loop conformations, but arrangements close to experiment that are sampled before the fully folded structure also appeared. Most of these intermediates included a stacking of the C-2 and G(3) bases, which was further stabilized by hydrogen bonding to the A(5) base and a strongly bound water molecule bridging the C-2 and A(5) in the DNA minor groove. The simulations suggest a folding mechanism where these intermediates can rapidly proceed toward the fully folded hairpin and emphasize the importance of loop and stem nucleotide interactions for hairpin folding. In one simulation, a loop motif with G(3) in syn conformation ( dihedral flip at N-glycosidic bond) accumulated, resulting in a misfolded hairpin. Such conformations may correspond to long-lived trapped states that have been postulated to account for the folding kinetics of nucleic acid hairpins that are slower than expected for a semiflexible polymer of the same size.
引用
收藏
页码:3218 / 3228
页数:11
相关论文
共 50 条