On the nonexistence of Steiner t-(v,k) trades

被引:0
|
作者
Hoorfar, A
Khosrovshahi, GB
机构
[1] IPM, Tehran, Iran
[2] Univ Tehran, Dept Math, Tehran, Iran
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish the nonexistence of: (i) Steiner t-(v,k) trades of volume s, for 2(t) + 2(t-1) < s < 2(t) + 2(t-1) + 2(t-2); (ii) Steiner 4-(v,k) trades of volume s = 29; (iii) Steiner t-(v, k) trades with k > t + 1 and volume s < (t - 1)2(t) + 2.
引用
收藏
页码:195 / 204
页数:10
相关论文
共 50 条
  • [1] t-(v, k) trades and t-(v, k) Latin trades
    Mahmoodian, E. S.
    Najafian, M. S.
    [J]. UTILITAS MATHEMATICA, 2011, 85 : 143 - 159
  • [2] On the non-existence of some Steiner t-(v, k) trades of certain volumes
    Asgari, Mehri
    Soltankhah, Nasrin
    [J]. UTILITAS MATHEMATICA, 2009, 79 : 277 - 283
  • [3] On the Spectrum of Steiner (v,k,t) Trades (II)
    Brenton D. Gray
    Colin Ramsay
    [J]. Graphs and Combinatorics, 1999, 15 : 405 - 415
  • [4] On the Spectrum of Steiner (v, k, t) Trades (II)
    Gray, BD
    Ramsay, C
    [J]. GRAPHS AND COMBINATORICS, 1999, 15 (04) : 405 - 415
  • [5] On the 3-way (v, k, 2) Steiner trades
    Rashidi, Saeedeh
    Soltankhah, Nasrin
    [J]. DISCRETE MATHEMATICS, 2016, 339 (12) : 2955 - 2963
  • [6] Steiner systems (t-(v, k, λ) schemes) and special features of the nanostructures symmetry description
    Samoylovich, M.
    Talis, A.
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2007, 27 (2-3) : 993 - 999
  • [7] Possible volumes of t-(v, t+1) Latin trades
    Mahmoodian, E. S.
    Najafian, M. S.
    [J]. ARS COMBINATORIA, 2013, 109 : 485 - 496
  • [8] On the spectrum of [v,k,t] trades
    Gray, BD
    Ramsay, C
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1998, 69 (01) : 1 - 19
  • [9] ON THE STRUCTURE OF (V,K,T) TRADES
    HWANG, HL
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1986, 13 (02) : 179 - 191
  • [10] ON THE POSSIBLE VOLUME OF μ-(v, k, t) TRADES
    Rashidi, S.
    Soltankhah, N.
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2014, 40 (06): : 1387 - 1401