On equivalence of negaperiodic Golay pairs

被引:4
|
作者
Egan, Ronan [1 ]
机构
[1] Univ Rijeka, Dept Math, Rijeka, Croatia
关键词
Negaperiodic Golay pair; Hadamard matrix; Relative difference set; Binary sequences; COCYCLIC HADAMARD-MATRICES; SEQUENCES;
D O I
10.1007/s10623-016-0320-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Associated pairs as defined by Ito (J Algebra 234:651-663, 2000) are pairs of binary sequence of length 2t satisfying certain autocorrelation properties that may be used to construct Hadamard matrices of order 4t. More recently, Balonin and Dokovic (Inf Control Syst 5:217, 2015) use the term negaperiodic Golay pairs. We define extended negaperiodic Golay pairs and prove a one-to-one correspondence with central relative (4t, 2, 4t, 2t)-difference sets in dicyclic groups of order 8t. We present a new approach for computing negaperiodic Golay pairs up to equivalence, and determine conditions where equivalent pairs correspond to equivalent Hadamard matrices. We complete an enumeration of negaperiodic Golay pairs of length 2t for 1 <= t <= 10, and sort them into equivalence classes. Some structural properties of negaperiodic Golay pairs are derived.
引用
收藏
页码:523 / 532
页数:10
相关论文
共 50 条
  • [1] On equivalence of negaperiodic Golay pairs
    Ronan Egan
    Designs, Codes and Cryptography, 2017, 85 : 523 - 532
  • [2] Large Zero Correlation Zone of Golay Pairs and QAM Golay Pairs
    Gong, Guang
    Huo, Fei
    Yang, Yang
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 3135 - +
  • [3] ON GOLAY POLYNOMIAL PAIRS
    ELIAHOU, S
    KERVAIRE, M
    SAFFARI, B
    ADVANCES IN APPLIED MATHEMATICS, 1991, 12 (03) : 235 - 292
  • [4] Golay complementary array pairs
    Jedwab, Jonathan
    Parker, Matthew G.
    DESIGNS CODES AND CRYPTOGRAPHY, 2007, 44 (1-3) : 209 - 216
  • [5] Golay complementary array pairs
    Jonathan Jedwab
    Matthew G. Parker
    Designs, Codes and Cryptography, 2007, 44 : 209 - 216
  • [6] Equivalence classes and representatives of Golay sequences
    Dokovic, DZ
    DISCRETE MATHEMATICS, 1998, 189 (1-3) : 79 - 93
  • [7] Some new periodic Golay pairs
    Dragomir Ž. Ðoković
    Ilias S. Kotsireas
    Numerical Algorithms, 2015, 69 : 523 - 530
  • [8] Some new periodic Golay pairs
    Dokovic, Dragomir Z.
    Kotsireas, Ilias S.
    NUMERICAL ALGORITHMS, 2015, 69 (03) : 523 - 530
  • [9] Periodic Golay Pairs of Length 72
    Dokovic, Dragomir Z.
    Kotsireas, Ilias S.
    ALGEBRAIC DESIGN THEORY AND HADAMARD MATRICES, ADTHM, 2015, 133 : 83 - 92
  • [10] Periodic Golay pairs and pairwise balanced designs
    Dean Crnković
    Doris Dumičić Danilović
    Ronan Egan
    Andrea Švob
    Journal of Algebraic Combinatorics, 2022, 55 : 245 - 257