Impact of Zn doping on the dielectric and magnetic properties of CoFe2O4 nanoparticles

被引:15
|
作者
Divya, S. [1 ]
Sivaprakash, P. [2 ,3 ]
Raja, S. [4 ]
Muthu, S. Esakki [5 ]
Kim, Ikhyun [6 ]
Renuka, N. [7 ]
Arumugam, S. [2 ]
Oh, Tae Hwan [1 ]
机构
[1] Yeungnam Univ, Sch Chem Engn, Gyongsan 712749, South Korea
[2] Bharathidasan Univ, Ctr High Pressure Res, Sch Phys, Tiruchirappalli 620024, India
[3] Kongunadu Coll Engn & Technol, Dept Phys, Thottiyam 621215, India
[4] Bharathidasan Univ, Dept Phys, Tiruchirappalli 620024, India
[5] Karpagam Acad Higher Educ, Ctr Mat Sci, Dept Phys, Coimbatore 641021, India
[6] Keimyung Univ, Dept Mech Engn, Daegu 42601, South Korea
[7] Abudhabi Mens Coll, Higher Coll Technol, Math & Nat Sci Engn Technol Div, Abu Dhabi, U Arab Emirates
基金
新加坡国家研究基金会;
关键词
Spinel ferrite; Sol-gel auto-combustion; Permittivity; Resistivity; Magnetization and electrical properties; COBALT-FERRITE; CATION DISTRIBUTION; ELECTRICAL-PROPERTIES; STOICHIOMETRY; NANOFERRITES; TEMPERATURE; BEHAVIOR; SPECTRA;
D O I
10.1016/j.ceramint.2022.07.263
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Owing to its unique magnetic, dielectric, electrical and catalytic properties, ferrite nanostructure materials gain vital importance in high frequency, memory, imaging, sensor, energy and biomedical applications. Doping is one of the strategies to manipulate the spinel ferrite structure, which could alter the physico-chemical properties. In the present work, Co1-xZnxFe2O4 (x = 0, 0.1, 0.2, 0.3, and 0.4 wt%) nanoparticles were prepared by sol-gel auto -combustion method and its structural, morphological, vibrational, optical, electrical and magnetic properties were studied. The structural analysis affirms the single-phase cubic spinel structure of CoFe2O4. The crystallite size, lattice constant, unit cell, X-ray density, dislocation density and hopping length were significantly varied with Zn doping. The Fe-O stretching vibration was estimated by FTIR and Raman spectra. TEM micrographs show the agglomerated particles and it size varies between 10 and 56 nm. The Hall effect measurement shows the switching of charge carriers from n to p type. The dielectric constant (epsilon ') varies from 0.2 x 103 to 1.2 x 103 for different Zn doping. The VSM analysis shows relatively high saturation magnetization of 57 and 69 emu/g for ZC 0.1 and ZC 0.2 samples, respectively than that of undoped sample. All the prepared samples exhibit soft magnetic behaviour. Hence, it can be realized that the lower concentration of Zn ion doping significantly alters the magnetic properties of CoFe2O4 through variation in the cationic distribution and exchange interaction between the Co and Fe sites of the inverse spinel structure of CoFe2O4.
引用
收藏
页码:33208 / 33218
页数:11
相关论文
共 50 条
  • [1] Effect of Ni doping on the magnetic and photocatalytic properties of CoFe2O4 nanoparticles
    Raza, Ali
    Bashir, Arslan
    Muhammad, Ejaz
    Jan, Tariq
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2024, 35 (25)
  • [2] Engineering the opticaland magnetic properties of Zn doped CoFe2O4 nanoparticles
    Kumar, Yogendra
    Sharma, Alfa
    Mazumder, Kushal
    Shirage, Parasharam M.
    DAE SOLID STATE PHYSICS SYMPOSIUM 2019, 2020, 2265
  • [3] Enhanced dielectric and magnetic properties of polystyrene added CoFe2O4 magnetic nanoparticles
    Vadivel, M.
    Babu, R. Ramesh
    Ramamurthi, K.
    Arivanandhan, M.
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2017, 102 : 1 - 11
  • [4] COMPARISON BETWEEN MAGNETIC PROPERTIES OF CoFe2O4 AND CoFe2O4/POLYPYRROLE NANOPARTICLES
    Mazeika, K.
    Bacyte, V
    Tykhonenko-Polishchuk, Yu O.
    Kulyk, M. M.
    Yelenich, O., V
    Tovstolytkin, A., I
    LITHUANIAN JOURNAL OF PHYSICS, 2018, 58 (03): : 267 - 276
  • [5] Role of graphene on structural, dielectric and magnetic properties of CoFe2O4 nanoparticles
    Saha, Sunirmal
    Das, Nishi
    Chakra, Poonam
    Routray, Krutika L.
    Behera, Dhrubananda
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (15) : 14464 - 14479
  • [6] Role of graphene on structural, dielectric and magnetic properties of CoFe2O4 nanoparticles
    Sunirmal Saha
    Nishi Das
    Poonam Chakra
    Krutika L. Routray
    Dhrubananda Behera
    Journal of Materials Science: Materials in Electronics, 2019, 30 : 14464 - 14479
  • [7] Synthesis and magnetic properties of CoFe2O4 nanoparticles
    Zhang, Yue-Ping
    Song, Ping-Xin
    Song, Xiao-Hui
    Mi, Zhen-Yu
    An, Lu-Lu
    Zhang, Ying-Jiu
    Rengong Jingti Xuebao/Journal of Synthetic Crystals, 2014, 43 (12): : 3118 - 3123
  • [8] Influence of Mn Doping on the Magnetic Properties of CoFe2O4
    Roongtao, Rachanusorn
    Baitahe, Rattanai
    Vittayakorn, Naratip
    Seeharaj, Panpailin
    Vittayakorn, Wanwilai C.
    FERROELECTRICS, 2014, 459 (01) : 119 - 127
  • [9] Structural, Optical, and Magnetic Properties of Zn-Doped CoFe2O4 Nanoparticles
    Tetiana Tatarchuk
    Mohamed Bououdina
    Wojciech Macyk
    Olexander Shyichuk
    Natalia Paliychuk
    Ivan Yaremiy
    Basma Al-Najar
    Michał Pacia
    Nanoscale Research Letters, 2017, 12
  • [10] Structural, Optical, and Magnetic Properties of Zn-Doped CoFe2O4 Nanoparticles
    Tatarchuk, Tetiana
    Bououdina, Mohamed
    Macyk, Wojciech
    Shyichuk, Olexander
    Paliychuk, Natalia
    Yaremiy, Ivan
    Al-Najar, Basma
    Pacia, Michal
    NANOSCALE RESEARCH LETTERS, 2017, 12