SOME UNUSUAL EPICOMPLETE ARCHIMEDEAN LATTICE-ORDERED GROUPS

被引:2
|
作者
Hager, Anthony W. [1 ]
机构
[1] Wesleyan Univ, Dept Math & Comp Sci, Middletown, CT 06459 USA
关键词
Lattice-ordered group; f-ring; epicomplete; reflection; sigma-complete; truncation; essential completion; continuum hypothesis; basically disconnected space; REPRESENTATION; THEOREM;
D O I
10.1090/S0002-9939-2015-12448-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An Archimedean l-group is epicomplete if it is divisible and sigma-complete, both laterally and conditionally. Under various circumstances it has been shown that epicompleteness implies the existence of a compatible reduced f-ring multiplication; the question has arisen whether or not this is always true. We show that a set-theoretic condition weaker than the continuum hypothesis implies "not", and conjecture the converse. The examples also fail decent representation and existence of some other compatible operations.
引用
收藏
页码:1969 / 1980
页数:12
相关论文
共 50 条
  • [1] EPICOMPLETE ARCHIMEDEAN LATTICE-ORDERED GROUPS
    TON, DR
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1989, 39 (02) : 277 - 286
  • [2] A theorem and a question about epicomplete archimedean lattice-ordered groups
    R. N. Ball
    A. W. Hager
    D. G. Johnson
    A. Kizanis
    Algebra universalis, 2009, 62 : 165 - 184
  • [3] A theorem and a question about epicomplete archimedean lattice-ordered groups
    Ball, R. N.
    Hager, A. W.
    Johnson, D. G.
    Kizanis, A.
    ALGEBRA UNIVERSALIS, 2009, 62 (2-3) : 165 - 184
  • [4] On the epicomplete monoreflection of an archimedean lattice-ordered group
    R. N. Ball
    A. W. Hager
    D. G. Johnson
    A. Kizanis
    algebra universalis, 2005, 54 : 417 - 434
  • [5] On the epicomplete monoreflection of an archimedean lattice-ordered group
    Ball, RN
    Hager, AW
    Johnson, DG
    Kizanis, A
    ALGEBRA UNIVERSALIS, 2005, 54 (04) : 417 - 434
  • [6] Singular Archimedean lattice-ordered groups
    A. W. Hager
    J. Martinez
    algebra universalis, 1998, 40 : 119 - 147
  • [7] ARCHIMEDEAN CLOSURES IN LATTICE-ORDERED GROUPS
    BYRD, RD
    CANADIAN JOURNAL OF MATHEMATICS, 1969, 21 (04): : 1004 - &
  • [8] Singular Archimedean lattice-ordered groups
    Hager, AW
    Martinez, J
    ALGEBRA UNIVERSALIS, 1998, 40 (02) : 119 - 147
  • [9] Archimedean closed lattice-ordered groups
    Chen, YQ
    Conrad, P
    Darnel, M
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2004, 34 (01) : 111 - 124
  • [10] Hereditarily projectable Archimedean lattice-ordered groups with unit
    Hager, Anthony W.
    Wynne, Brian
    QUAESTIONES MATHEMATICAE, 2024, 47 : 179 - 193