Robust Exemplar Extraction Using Structured Sparse Coding

被引:75
|
作者
Liu, Huaping [1 ,2 ]
Liu, Yunhui [1 ,2 ]
Sun, Fuchun [1 ,2 ]
机构
[1] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China
[2] Tsinghua Natl Lab Informat Sci & Technol, State Key Lab Intelligent Technol & Syst, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Alternating directional method of multiplier (ADMM); robust exemplar extraction; structured sparse coding; traffic sign recognition;
D O I
10.1109/TNNLS.2014.2357036
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Robust exemplar extraction from the noisy sample set is one of the most important problems in pattern recognition. In this brief, we propose a novel approach for exemplar extraction through structured sparse learning. The new model accounts for not only the reconstruction capability and the sparsity, but also the diversity and robustness. To solve the optimization problem, we adopt the alternating directional method of multiplier technology to design an iterative algorithm. Finally, the effectiveness of the approach is demonstrated by experiments of various examples including traffic sign sequences.
引用
收藏
页码:1816 / 1821
页数:6
相关论文
共 50 条
  • [1] Noise Robust Exemplar Matching Using Sparse Representations of Speech
    Yilmaz, Emre
    Gemmeke, Jort Florent
    Van Hamme, Hugo
    [J]. IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2014, 22 (08) : 1306 - 1319
  • [2] Robust Classification using Structured Sparse Representation
    Elhamifar, Ehsan
    Vidal, Rene
    [J]. 2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011,
  • [3] Improved feature extraction using structured Fisher discrimination sparse coding scheme for machinery fault diagnosis
    Wang, Shuangyuan
    Huang, Yixiang
    Gong, Liang
    Li, Lin
    Liu, Chengliang
    [J]. ADVANCES IN MECHANICAL ENGINEERING, 2016, 8 (12) : 1 - 16
  • [4] Discriminant Manifold Learning via Sparse Coding for Robust Feature Extraction
    Pang, Meng
    Wang, Binghui
    Cheung, Yiu-Ming
    Lin, Chuang
    [J]. IEEE ACCESS, 2017, 5 : 13978 - 13991
  • [5] Structured Sparse Coding With the Group Log-regularizer for Key Frame Extraction
    Zhenni Li
    Yujie Li
    Benying Tan
    Shuxue Ding
    Shengli Xie
    [J]. IEEE/CAA Journal of Automatica Sinica, 2022, (10) : 1818 - 1830
  • [6] Structured Sparse Coding With the Group Log-regularizer for Key Frame Extraction
    Li, Zhenni
    Li, Yujie
    Tan, Benying
    Ding, Shuxue
    Xie, Shengli
    [J]. IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2022, 9 (10) : 1818 - 1830
  • [7] Sparsity-constrained and dynamic group structured sparse coding for robust visual tracking
    Yuan, Guang-Lin
    Xue, Mo-Gen
    [J]. Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2015, 43 (08): : 1499 - 1505
  • [8] Robust Visual Tracking Using Flexible Structured Sparse Representation
    Bai, Tianxiang
    Li, Youfu
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2014, 10 (01) : 538 - 547
  • [9] Image classification using spatial pyramid robust sparse coding
    Zhang, Chunjie
    Wang, Shuhui
    Huang, Qingming
    Liu, Jing
    Liang, Chao
    Tian, Qi
    [J]. PATTERN RECOGNITION LETTERS, 2013, 34 (09) : 1046 - 1052
  • [10] Defect Consideratons for Robust Sparse Coding Using Memristor Arrays
    Sheridan, Patrick
    Lu, Wei D.
    [J]. PROCEEDINGS OF THE 2015 IEEE/ACM INTERNATIONAL SYMPOSIUM ON NANOSCALE ARCHITECTURES (NANOARCH 15), 2015, : 137 - 138