Multi-Objective Optimisation under Uncertainty with Unscented Temporal Finite Elements

被引:1
|
作者
Ricciardi, Lorenzo A. [1 ]
Maddock, Christie Alisa [1 ]
Vasile, Massimiliano [1 ]
机构
[1] Univ Strathclyde, Aerosp Ctr Excellence, Glasgow G1 1XJ, Lanark, Scotland
关键词
optimal control; multi-objective optimisation; robust design; trajectory optimisation; uncertainty quantification; unscented transformation; spaceplanes; space systems; launchers;
D O I
10.3390/math9233010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents a novel method for multi-objective optimisation under uncertainty developed to study a range of mission trade-offs, and the impact of uncertainties on the evaluation of launch system mission designs. A memetic multi-objective optimisation algorithm, named MODHOC, which combines the Direct Finite Elements in Time transcription method with Multi Agent Collaborative Search, is extended to account for model uncertainties. An Unscented Transformation is used to capture the first two statistical moments of the quantities of interest. A quantification model of the uncertainty was developed for the atmospheric model parameters. An optimisation under uncertainty was run for the design of descent trajectories for a spaceplane-based two-stage launch system.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Multi-objective optimisation under deep uncertainty
    Babooshka Shavazipour
    Theodor J. Stewart
    [J]. Operational Research, 2021, 21 : 2459 - 2487
  • [2] Multi-objective optimisation under deep uncertainty
    Shavazipour, Babooshka
    Stewart, Theodor J.
    [J]. OPERATIONAL RESEARCH, 2021, 21 (04) : 2459 - 2487
  • [3] Multi-objective optimisation with uncertainty
    Jones, P
    Tiwari, A
    Roy, R
    Corbett, J
    [J]. PROCEEDINGS OF THE EIGHTH IASTED INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, 2004, : 114 - 119
  • [4] Multi-objective optimisation for biopharmaceutical manufacturing under uncertainty
    Liu, Songsong
    Papageorgiou, Lazaros G.
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2018, 119 : 383 - 393
  • [5] Multi-objective optimisation in the presence of uncertainty
    Fieldsend, JE
    Everson, RM
    [J]. 2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 243 - 250
  • [6] Multi-objective optimisation with robustness and uncertainty
    Aitbrik, B.
    Bouhaddi, N.
    Cogan, S.
    Huang, S. J.
    [J]. Proceedings of The Seventh International Conference on the Application of Artificial Intelligence to Civil and Structural Engineering, 2003, : 73 - 74
  • [7] An integrated approach for multi-objective optimisation and MCDM of energy internet under uncertainty
    Hong, Zhaoxi
    Feng, Yixiong
    Li, Zhiwu
    Wang, Yong
    Zheng, Hao
    Li, Zhongkai
    Tan, Jianrong
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 97 : 90 - 104
  • [8] The fuzzy multi-objective optimisation model for a green supply chain under uncertainty
    Fakhrzad, M. B.
    Bazeli, Shakiba
    [J]. INTERNATIONAL JOURNAL OF VALUE CHAIN MANAGEMENT, 2018, 9 (04) : 330 - 342
  • [9] Non-parametric measure approximations for constrained multi-objective optimisation under uncertainty
    Rivier, M.
    Razaaly, N.
    Congedo, P. M.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2024, 125 (07)
  • [10] Multi-objective multi-product multi-site aggregate production planning in a supply chain under uncertainty: fuzzy multi-objective optimisation
    Gholamian, N.
    Mahdavi, I.
    Tavakkoli-Moghaddam, R.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 2016, 29 (02) : 149 - 165