MIXED NOISE REMOVAL FOR HYPERSPECTRAL IMAGES USING HYBRID SPATIO-SPECTRAL TOTAL VARIATION

被引:0
|
作者
Takeyama, Saori [1 ]
Ono, Shunsuke [1 ]
Kumazawa, Itsuo [1 ]
机构
[1] Tokyo Inst Technol, Tokyo, Japan
关键词
hyperspectral image; mixed noise removal; ADMM;
D O I
10.1109/icip.2019.8803239
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
This paper proposes a new mixed noise removal method using a hybrid spatio-spectral total variation (HSSTV) for hyperspectral (HS) images. HSSTV effectively evaluates spatial and spectral piecewise smoothness and would be a powerful regularization for HS image restoration. Existing mixed noise removal methods evaluate a-priori knowledge of an HS image via multiple regularizations. However, they do not appropriately evaluate spatial piecewise smoothness, resulting in oversmoothing or artifacts. Moreover, parameter settings in existing methods are troublesome tasks because multiple balancing parameters are interdependent. In contrast, thanks to HSSTV, the proposed method can restore a clean HS image while keeping sharp edges and details. In addition, parameter settings in our method are much easier than existing ones because data fidelity is imposed as hard constraints. In the experiments, we demonstrate the advantages of our proposed method over existing regularizations.
引用
收藏
页码:3128 / 3132
页数:5
相关论文
共 50 条
  • [1] HYPERSPECTRAL IMAGE RESTORATION BY HYBRID SPATIO-SPECTRAL TOTAL VARIATION
    Takeyama, Saori
    Ono, Shunsuke
    Kumazawa, Itsuo
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 4586 - 4590
  • [2] Hyperspectral Image Denoising Using Spatio-Spectral Total Variation
    Aggarwal, Hemant Kumar
    Majumdar, Angshul
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (03) : 442 - 446
  • [3] ROBUST AND EFFECTIVE HYPERSPECTRAL PANSHARPENING USING SPATIO-SPECTRAL TOTAL VARIATION
    Takeyama, Saori
    Ono, Shunsuke
    Kumazawa, Itsuo
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 1603 - 1607
  • [4] Suppression of Gaussian Noise using Spatio-Spectral Total Variation Technique
    Bhonsle, Devanand
    Sinha, G. R.
    Shrivastava, Divya Prakash
    [J]. 2020 SEVENTH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY TRENDS (ITT 2020), 2020, : 89 - 93
  • [5] Graph Spatio-Spectral Total Variation Model for Hyperspectral Image Denoising
    Takemoto, Shingo
    Naganuma, Kazuki
    Ono, Shunsuke
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [6] SPATIO-SPECTRAL DECONVOLUTION OF VECTOR VALUED IMAGES USING TOTAL NUCLEAR VARIATION
    Hidane, M.
    Tauber, C.
    [J]. 2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 1212 - 1216
  • [7] Hyperspectral Image Denoising via Group Sparsity Regularized Hybrid Spatio-Spectral Total Variation
    Zhang, Pengdan
    Ning, Jifeng
    [J]. REMOTE SENSING, 2022, 14 (10)
  • [8] Spatio-Spectral Compression and Analysis of Hyperspectral Images using Tensor Decomposition
    Renu, R. K.
    Sowmya, V
    Soman, K. P.
    [J]. 2018 TWENTY FOURTH NATIONAL CONFERENCE ON COMMUNICATIONS (NCC), 2018,
  • [9] Spatio-spectral hybrid compressive sensing of hyperspectral imagery
    Wang, Zhongliang
    Feng, Yan
    Jia, Yingbiao
    [J]. REMOTE SENSING LETTERS, 2015, 6 (03) : 199 - 208
  • [10] ADAPTIVE SPECTRAL REFLECTANCE RECOVERY USING SPATIO-SPECTRAL SUPPORT FROM HYPERSPECTRAL IMAGES
    Khan, Zohaib
    Shafait, Faisal
    Mian, Ajmal
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 664 - 668